看图.仅有答案的不行。 谢!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:12:40
看图.仅有答案的不行。 谢!
xW[SW*g eMdb@;dY4δә B*EA1&gwWلhX4 >€ƭ={`jp$\B{uuypݮGFOj E dmuts#ҟ^J$H8}[=Zl[vQ{;Q &\%~|I}# u`U|Y$} uP1Ҧ.<H}SA~1=s( e?ҔLԮ)CB9ĺHJ@k+fMa;M5뛍%<y,Wdj&F#g ka%L}dostZ.W?/@e4چ|k,@ \TVPV˾fGrY/3J+{N̪+þD5 @ ҝS(*{ +*ą>T¾UNgl< dA,TS)֞O{ȧt\nUd~ a8W}15hJa)5դKɐǓO$L8CBBEr"f߿b`EpL˺(ʪl ¨OEو)X2wa?jGqy8'rVDOX#ȄSnU6IhDV{ _&ȒvjۂOb`sv&PD u#ցY / A-;btq_!l9%lf]Zʥ4yu֗PLL7wJ5;%r/:G 4RHW$Y`P+,xo곆I@N&US=xg %k+9ߙnf&û1m,f'ZðnN7ui?m:l߮lW4%8WpjV+X!{GspѨ j0byEMaw4VOp$ΖX_(] R7#:;nXt^XkxxlOٙ(f$ObyJ͇_rɜ/]qlArdܥlLNJ?8Eww:P)%~c9Ekrk`|C7ѵgbߴ,iU#pPӔre#|@r #b

看图.仅有答案的不行。 谢!
看图.
仅有答案的不行。
 谢!

看图.仅有答案的不行。 谢!
解由2^(p-1)/p是平方数,则存在整数n,使得(2^(p-1)-1)/p=n^2
即                   2^(p-1)-1=p×n^2,                (1)
当p=2时,2^(p-1)-1=1,显然不存在n,使得1=2×n^2,故p=2不满足(1)式,p=2不是该问题的解,下面仅考虑p是奇素数的情况:
对任意奇素数p,设p=2k+1,k≥1为整数,故得
2^(p-1)-1=2^(2k)-1=(2^k+1)(2^k-1),代入(1)得
       (2^k+1)(2^k-1)=p×n^2,                 (2)
故p整除2^k+1或2^k-1,由p,2^k+1,2^k-1均为奇数,故n也必是奇数,则存在整数t有n=2t+1,n^2=4t^2+4t+1=4s+1,即n^2≡1(mod4),如果p≡1(mod4),则p×n^2≡1(mod4),而2^(p-1)-1≡-1(mod4),这与(1)式矛盾,故p≡-1(mod4),即p只能整除2^k-1,再由于2^k+1,2^k-1互素,则一定存在n=uv使得
2^k+1=u^2
2^k-1=pv^2
由2^k+1=u^2得2^k=(u-1)(u+1),2是该式两边惟一的素因,故存在整数t使得u-1=2^t,当u>3时,t>1,则u+1=2(2^(t-1)+1)含有奇数因子2^(t-1)+1,故u>3时该问题无解,即2^k+1=u^2>9,k>3,p=2k+1>7无解.
将满足p≡-1(mod4)且p≤7的3,7代入(1)式,经验证均是该问题的解.
故满足条件的p仅有3,7.

1、3、7

1不是素数,所以应该只有 3 和 7 。

3 7

令 u = 2^[(p-1)/2], 则 2^(p-1) - 1 = (u + 1)(u - 1). 显然 p 不等于 2, u 为偶数, 所以 (u + 1) 与 (u - 1) 互素. 因此, u + 1 = p 或 u - 1 = p, 另一项是平方数. 由于 u 随 p 指数增长, 当 p > 7 时 u 恒大于 p + 1, 因此只要检验 3, 5, 7 三个数, 两种情况的解分别为 3 和 7.

a

只有5楼CharmQuark的答案还算靠谱,不过还是有很严重的问题。
设2^{p-1}-1=p*a^2
1) p>2,直接验证。
2) p必定是4k-1型的,因为左侧2^{p-1}-1是4k-1型的,而a^2必定是4k+1型的(事实上a^2一定是8k+1型的,只是这题不需要用)。直接验证p=3和p=7。
3) 当p>7时,记p=2m+1,2^{p-1}-1=(2^m...

全部展开

只有5楼CharmQuark的答案还算靠谱,不过还是有很严重的问题。
设2^{p-1}-1=p*a^2
1) p>2,直接验证。
2) p必定是4k-1型的,因为左侧2^{p-1}-1是4k-1型的,而a^2必定是4k+1型的(事实上a^2一定是8k+1型的,只是这题不需要用)。直接验证p=3和p=7。
3) 当p>7时,记p=2m+1,2^{p-1}-1=(2^m+1)(2^m-1)=p*a^2,注意到2^m+1和2^m-1互质,因此a的因子必须成对分布于其中,再考察关于4的余数可得
2^m+1=u^2
2^m-1=p*v^2
a=uv
然后只需要看第一个方程
2^m=u^2-1=(u+1)(u-1)
又端两项最大公因子至多是2,所以当u>3时无解,于是p>7时无解。
5楼的问题在于直接默认了第3步中a的因子不能拆分到两边,而这是需要证明的。

收起

前一千个素数,找到两个,p=3, 7

令 u = 2^[(p-1)/2], 则 2^(p-1) - 1 = (u + 1)(u - 1). 显然 p 不等于 2, u 为偶数, 所以 (u + 1) 与 (u - 1) 互素. 因此, u + 1 = p 或 u - 1 = p, 另一项是平方数. 由于 u 随 p 指数增长, 当 p > 7 时 u 恒大于 p + 1, 因此只要检验 3, 5, 7 三个数, 两种情况的解分别为 3 和 7.