设a1,.an是n维线性空间的一组基,A是n*s矩阵,(b1,...,bs)=(a1,.,an)A,证明L(b1,...,bs)的维数等于A等于A的秩.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 08:41:29
x){n_^b|g
˟rZhx]: Z|9cFPNR W$ `Kܡ_`g3(Ooz>N"D[bϦ/xںYgÓKVr5z4!"|58j^\g
#
设a1,.an是n维线性空间的一组基,A是n*s矩阵,(b1,...,bs)=(a1,.,an)A,证明L(b1,...,bs)的维数等于A等于A的秩.
设a1,.an是n维线性空间的一组基,A是n*s矩阵,(b1,...,bs)=(a1,.,an)A,证明L(b1,...,bs)的维数等于A
等于A的秩.
设a1,.an是n维线性空间的一组基,A是n*s矩阵,(b1,...,bs)=(a1,.,an)A,证明L(b1,...,bs)的维数等于A等于A的秩.
由已知,a1,...,an 线性无关
所以 r(b1,...,bs) = r((a1,...,an)A) = r(A)
所以 L(b1,...,bs) = r(A).
设a1,.an是n维线性空间的一组基,A是n*s矩阵,(b1,...,bs)=(a1,.,an)A,证明L(b1,...,bs)的维数等于A等于A的秩.
设a1,a2...an是n维线性空间的一组基,b1,b2...,bs是V的一组向量求解第13题
线性空间的基的问题已知(a1,……an)是n维空间的一组基,A为n阶满秩方阵 (b1,……bn)=(a1,……an)A是否也是一组基?
设a1,a2,...an是一组n维向量,证明:a1,a2,...an线性无关的充要条件是任一n维向量都可被他们线性表出
非常基本的线性代数证明题1.设a1,a2,...,an是一组n维向量,已知n维单位坐标向量e1,e2,...,en能由它们线性表示,证明a1,a2,...,an线性无关.2.设a1,a2,...an是一组n维向量,证明它们线性无关的充要条件是任
设a1,a2,a3...an为一组n维向量,证明这n个向量线性无关的充要条件是任一n...设a1,a2,a3...an为一组n维向量,证明这n个向量线性无关的充要条件是任一n维向量都可经它们线性表出.
证明线性无关的题目.设a1,a2,a3...an为一组n维向量,已知n维单位向量e1,e2,e3.en 都可由其线性表示,证明a1,a2,a3...an线性无关.
设a1.a2···an是一组n维向量,证明它们线性无关的充要条件是:任一n维向量能可由它们线性表示
a1,a2,…an是一组n维向量,证明:它们线性无关的充分必要条件是任一n维向量组都可以由它们线性表示.
问一道线性代数向量组线性相关性的问题..设a1,a2,…an是一组n维向量,且任一n维向量b都可由它们线性表示.证明a1,a2,...an构成的向量组线性无关.
设a1,a2,...an是n维欧氏空间V的一组基,a,b是V中任意向量,且,a=x1a1+...+xnan,b=y1a1+...+ynan证明(a,b)=x1y1+...+xnyn《=》a1,a2...an是标准正交基
设a1,a2,...,an是n维列向量空间R^n的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组Aa1,Aa2...,Aan一定是R^n的基
求解关于线性空间的数学题设矩阵A=(a1,a2,a3,a4)a1=(3,5,6,9)Ta2=(1,0,2,3)Ta2=(3,2,6,9)Ta2=(-2,-7,b+2,b)T1.求A的零空间N(A)的维数dimN2.求N(A)的一组基突然发现题目打错了a3=(3,7,6,9)T不好意思哈……
在N维线性空间Pn中,下列N维向量的集合V,是否构成P上的线性空间:V={x=(a1,a2…an)|Ax=0,A∈Pm*n}
设V是n维欧氏空间,a1,a2...an是V的一组基,b属于V,若(b,ai)=0,i=1,2,...,n,试证:b=0线性代数
设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则b1=b2
设a1,a2,a3,...an是n维列向量空间Rn的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组Aa1 Aa2 Aa3.Aan一定是Rn的基.
为什么n维线性空间中的n个线性无关的向量都可以构成它的一组基?