就是选几个练习题,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 17:17:48
就是选几个练习题,
xXR~y)DRϲJ! HDQm 0ƈ\䇏⬹׫g.XݫW{>捾ӰMk]eu~_&<}if'_R+r9!6.shc fdεަԴVVlJXzSEMm3k$˘I|˧/݌֫F]Q9zh?߳}j.ޓ"l㲾rh2J?5ZQ]qQ!f_Ų7!'VZ͋[Cd![}è=#~NtP~xrP |*y;gGGOV,ybԓ"cᱱW7~>ǩʕUqիKX2jkE+]3 qs/GCb%-Pe)I.K?8gG q}ڤpe,?"Ql!U'X #S 㐅4t|X钞0:]6%D]tXv@(&saQOy\vϠm"\goPT렃U!n0z&A%BNl;1]Wb,Tb١° qRdzt?Δ-]V  1 ssh)z!l2EjAͥ+l\T([S?YBD6IIqXH*. 2’,FMQickgnԎ=吸T Z}5T%ֲ1}o`;"qPz7;nVn$XΘuĚ *M6r#7QDzRבUzz.s' n ]Ka\9^$SI6*k(˸=WPaK o[XU̗iZ 8ǃkRRn@$t8vMC|a_qE|Z[V4 (RR3>U MucƂ?w=A!GҿXR0rM1M:5zJ5.Q:m c#!mBxa @ G=fP Z"h L# ^T}aUJwCZ(m~;cIGchʙP vn^:_9y@){A)>IƸΠb`|I -\tpW>NH%l;n CFb(^GDE$&b N*~!vjJ7 vTn#;˪Glݜ STtP3|L99}MnXwqA>;X/E^rt׫P|LB- OM|?_}]tr8,6urNn-{`H'UYn֫h2Z: y 4h[s,au0&#< K$ Go1FKAXL/}ĺU^€pLQL_ (r ?&[aFtO$KPNUQO['eJ.* %bf-jܿ6(LׯDt&b59 i3$ĦCNxrԝc^oBMQ&rt)<4FvR8/p[O%3(*sN>V4^T޻3 fF:ghxAJ.:)m9IJ'&aGT)eYJ6fKSESu"Z'>ΑޫV:oZ)Vy ^KRxBگ3olG 33mU6Л[*{B=B[Otp~^ '˴qRLSJazLS"3$q2Q

就是选几个练习题,
就是选几个练习题,

就是选几个练习题,
追及问题
【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体.这类应用题就叫做追及问题.
【数量关系】 追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式.
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解 (1)劣马先走12天能走多少千米?75×12=900(千米)
(2)好马几天追上劣马?900÷(120-75)=20(天)
列成综合算式 75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马.
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑.小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米.
解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间.又知小明跑200米用40秒,则跑500米用〔40×(500÷200)〕秒,所以小亮的速度是
(500-200)÷〔40×(500÷200)〕
=300÷100=3(米)
答:小亮的速度是每秒3米.
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击.已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解 敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是〔10×(22-6)〕千米,甲乙两地相距60千米.由此推知
追及时间=〔10×(22-6)+60〕÷(30-10)
=220÷20=11(小时)
答:解放军在11小时后可以追上敌人.
例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离.
解 这道题可以由相遇问题转化为追及问题来解决.从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为 16×2÷(48-40)=4(小时)
所以两站间的距离为 (48+40)×4=352(千米)
列成综合算式 (48+40)×〔16×2÷(48-40)〕
=88×4
=352(千米)
答:甲乙两站的距离是352千米.
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米.哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇.问他们家离学校有多远?
解 要求距离,速度已知,所以关键是求出相遇时间.从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,
那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的距离为 90×12-180=900(米)
答:家离学校有900米远.
例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课.后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校.求孙亮跑步的速度.
解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了 (10-5)分钟.如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用〔9-(10-5)〕分钟.
所以
步行1千米所用时间为 1÷〔9-(10-5)〕
=0.25(小时)
=15(分钟)
跑步1千米所用时间为 15-〔9-(10-5)〕=11(分钟)
跑步速度为每小时 1÷11/60=5.5(千米)
答:孙亮跑步速度为每小时 5.5千米.

早晨,小明8:00吃过饭步行去上学,每分钟行走60米,爸爸十分钟后发现作业本忘家了,于是,骑自行车去追,已知爸爸骑车的速度是每分钟300米,问多长时间可以追上小明?(学校较远!)

追及问题
【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。

【数量关系】 追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时...

全部展开

追及问题
【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。

【数量关系】 追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间

【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解 (1)劣马先走12天能走多少千米? 75×12=900(千米)
(2)好马几天追上劣马? 900÷(120-75)=20(天)
列成综合算式 75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。

例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用〔40×(500÷200)〕秒,所以小亮的速度是
(500-200)÷〔40×(500÷200)〕
=300÷100=3(米)
答:小亮的速度是每秒3米。

例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解 敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是〔10×(22-6)〕千米,甲乙两地相距60千米。由此推知
追及时间=〔10×(22-6)+60〕÷(30-10)
=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。

例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为 16×2÷(48-40)=4(小时)
所以两站间的距离为 (48+40)×4=352(千米)
列成综合算式 (48+40)×〔16×2÷(48-40)〕
=88×4
=352(千米)
答:甲乙两站的距离是352千米。

例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,
那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的距离为 90×12-180=900(米)
答:家离学校有900米远。

收起