对于n维向量组A:a1,a2,...,am,线性相关的定义是什么?如果只有一个向量a1,如何定义它的线性相关性?如果有两个向量a1,a2,又该如何定义它的线性相关性?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:13:00
xݒON@ů2K
cKWiC(D_\(("$eNYq?F Ƹ'MNMn-1CnU(ydטJY*BIld:A~$j9 .g>Uj@4eוQ_Y4ogGdr>o;qw(ڡvvߋэCx
=[p>(Rb$)ljX*ajH$6 3S$A~,(~[*O+s})KaH6q2.Bw,S:,ta2nYJP-S=X[\%־C%(}0܄AGA^&EYg8R'
对于n维向量组A:a1,a2,...,am,线性相关的定义是什么?如果只有一个向量a1,如何定义它的线性相关性?如果有两个向量a1,a2,又该如何定义它的线性相关性?
对于n维向量组A:a1,a2,...,am,线性相关的定义是什么?如果只有一个向量a1,如何定义它的线性相关性?如果有两个向量a1,a2,又该如何定义它的线性相关性?
对于n维向量组A:a1,a2,...,am,线性相关的定义是什么?如果只有一个向量a1,如何定义它的线性相关性?如果有两个向量a1,a2,又该如何定义它的线性相关性?
如果存在不全为零的数 k1, k2, ···,km , 使k1 a1+ k2 a2+ ··· + km am= 0,则称向量组A是线性相关的, 否则称它是线性无关.只有一个向量如果非要定义的话只能说它是和自己线性相关的(n k1+(-n)k1=0,n属于R且n不等于0),两个的话就是存在不全为零的数k1, k2使得k1 a1+ k2 a2= 0
对于n维向量组A:a1,a2,...,am,线性相关的定义是什么?如果只有一个向量a1,如何定义它的线性相关性?如果有两个向量a1,a2,又该如何定义它的线性相关性?
线性的向量组问题 对于mxn矩阵A的n个m维列向量为什么是向量组a1,a2.an?到底怎线性的向量组问题 对于mxn矩阵A的n个m维列向量为什么是向量组a1,a2.an?到底怎么理解"维"?
设n介可逆矩阵A的列向量组为a1,a1,a2,…,an,证明:对于任意n元向量b,向量组a1,a2,…,an,b都线性相关
请给位帮帮忙谁会做这个题.对于n维向量组A:a1,a2,...,am,线性相关的定义是什么请给位帮帮忙谁会做这个题.对于n维向量组A:a1,a2,...,am,线性相关的定义是什么?如果只有一个向量a1,如何定义它
设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]
刘老师请问这道题怎么解答?对于n维向量组A:a1,a2,...,am,线性相关的定义是什么?如果只有一个向量a1,如何定义它的线性相关性?如果有两个向量a1,a2,又该如何定义它的线性相关性?
有关线性代数的问题,望高人指教指教.设a1,a2,a 为n维向量组,且秩(a1,a2,a)=r,则()
线性相关性设向量组a1,a2,a3线性无关,向量B1可由a1,a2,a3线性表示,而向量B2不能由a1,a2,a3线性表示,则对于任意常数k,必有A.a1,a2,a3,kB+B2线性无关 B.a1,a2,a3,kB+B2线性相关C.a1,a2,a3,B1+kB线性无关 D.a1,a2,a3,
正交向量已知n维向量组a1,a2,.a(n-1) 线性无关 ,b与ai(i=1,2,3,4...,n-1)正交,证明a1,a2...a(n-1) ,b 线性无关
设A为n阶矩阵,a1,a2,a3是n维列向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,Aa3=a2+a3.证明A和(a1,a2,a3)是一个矩阵?
单选 n维向量组a1, a2,……as(3≤s≤n)线性相关的充要条件是( )A a1,a2,……,as中任意两个向量都线性相关 B a1,a2,……,as中有两个向量成比例 C a1,a2,……,as至少一个向量可
已知A是n阶方阵,a1,a2,a3为n维列向量,且a1≠0,Aa1=a1,Aa2=a1+a2,Aa3= a2+a3,求证a1,a2,a3线性无关
a1.a2.a3为n维向量,向量组a1+a2.a2+a3.a1+a3线性无关,证明向量组a1.a2.a3线性无关
设两个n维向量组A:a1, a2, … , ar; B: b1, b2, … , bs, 如果向量组A可由向量组B 线性表示,请解释 两个n维向量组A:a1, a2, … , ar; B: b1, b2, … , bs, 如果向量组A可由向量组B 线性表示,且向量
向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为 向量组a1,a2,---,as线性无关,向量组b1,b2,bs线性无关的充分必要条件为 A向量组a1,a2,---,as可由向量组b1,b2,bs线性表示B向量
n维向量组A:a1,a2,...an,N:n1,n2...nn,N可由A线性表示,求证A线性无关
设a1,a2为n维列向量,A为n阶正交矩阵,证明:(1)[Aa1,Aa2]=[a1,a2] (2){Aa1}={a1}
证明n维向量组a1,a2,…,an线性无关的充分必要条件是:任一n维向量a都可以由它们线性表示.