设T是V的一个线性变换,如果T^(k-1)*α≠0,但T^k*α=0,证明a,Ta,.T^(k-1)a线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:37:12
设T是V的一个线性变换,如果T^(k-1)*α≠0,但T^k*α=0,证明a,Ta,.T^(k-1)a线性无关
xKNPʕc`aބ@}`Ҩ mLD4Ka<L;ι}:&M|饁clŸg*&1E#! Kpk:%MDA F=)bt#hۇؖ4J$!vb: @24Gi0Xv<#S7ԯ_T!

设T是V的一个线性变换,如果T^(k-1)*α≠0,但T^k*α=0,证明a,Ta,.T^(k-1)a线性无关
设T是V的一个线性变换,如果T^(k-1)*α≠0,但T^k*α=0,证明a,Ta,.T^(k-1)a线性无关

设T是V的一个线性变换,如果T^(k-1)*α≠0,但T^k*α=0,证明a,Ta,.T^(k-1)a线性无关
证明:
若存在k0,k1,...,k(n-1),使得:
k0a+k1Ta+...+k(n-1)T^(k-1)a=0
由于T^(k-1)a≠0,等式两端同时作用T^(k-1)得:
k0T^(k-1)a=0=>k0=0,带入原式得:
k1Ta+...+k(n-1)T^(k-1)a=0
等式两端同时作用T^(k-2)得:
k1T^(k-1)a=0=>k1=0
依此类推可知,k0,k1,...,kn都为零
故a,Ta,.T^(k-1)a线性无关.
证毕

设T是V的一个线性变换,如果T^(k-1)*α≠0,但T^k*α=0,证明a,Ta,.T^(k-1)a线性无关 设T是V的一个线性变换,如果T^(k-1)*α≠0,但T^k*α=0,(1)证明a,Ta,.T^(k-1)a线性无关(2)设W(α)=span{α,Tα,.T^(k-1)α},将T看成W(α)中的线性变换,试求T在基α,Tα,.T^(k-1)α下的矩阵 第一问我知道了,主 设T为线性空间V的一个线性变换,且T的平方等于T,证明T的特征值只能是1或0 线性空间,线性变换,特征值与特征向量设V是复数域上的n维线性空间,s,t是V的线性变换,且st=ts.求证:(1)如果λ0是s的特征值,那么λ0的特征子空间V(λ0)是t的不变子空间;(2)s,t至少有一个公 在V上定义线性变换T为T(x)=x-2(x,a)a,其中a是欧式空间V的一个单位向量设a是n维欧式空间V的一个单位向量,在V上定义线性变换T为T(x)=x-2(x,a)a,求:(1)证明T^2=Ev,Ev是V上的单位变换(2)在V中找出 设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明: 2.若V1与V(-1)分别表示T 设T是数域P上n维线性空间V的一个线性变换,且T^2=T,R(T)表示T的值域,N(T)表示T的零空间或核,证明:1、N(T)=R(I-T),其中I表示线性空间V上的单位变换;V=R(T)+N(T) 谁能给证明一下,矩阵分析的问题设T是线性空间V的线性变换.证明K={a∈V|Ta=0}是V的子空间 设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,Tα2,…,Tαs) T是数域K上的n维线性空间V的一个线性变换,证明:T在任意一组基下的矩阵都相同的充要条件是T是数乘变换充分性我知道,主要是必要性怎么证 T是数域K上的n维线性空间V的一个线性变换,证明:T在任意一组基下的矩阵都相同的充分必要条件是T是数乘变换 设W,U是V的线性变换T的不变子空间,证明:W交U,W+U也是T的不变子空间 v是数域p上的n维线性空间,T是v的线性变换.证明,存在v的线性变换S,使得TST=T 求解一道线性代数里线性变换的题定义一个线性变换R3->R2,T(V)->W,此变换是一个映成线性转换(就是DIM IM T(值域的维数)=DIM W ,且,(2,1,0)属于KER T,T(1,0,0)=(1,1).这题我已经算到这一步T(X,Y)=(X-2Y+C1Z 设V是数域P上n维线性空间,t是V的一个线性变换,t的特征多项式为f(a).证明:f(a)在p上不可约的充要条件是V无关于t的非平凡不变子空间. 关于线性变换,一一对应,映射的证明题证明:设有一个线性变换T,这个T会把任意一个线性无关的向量x,x属于U,变换之后对应到另一个线性无关的向量y,y属于V.那么我们说T必须是1-1(单射)证明 判断题,设T为n维线性空间V的线性变换,V中向量组α1,α2,...,αm线性无关,则Tα1,Tα2,...Tαm线性无关.刘老师,为什么这句话是错误的呢? 设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然.