椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e,P为E上一点,从P向圆x^2+y^2=b^2作切线PA、PB,A、B为切点,问是否存在点P,使PA⊥PB?若存在,求出点P坐标;若不存在请说明理由.(高二选修1-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:35:47
椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e,P为E上一点,从P向圆x^2+y^2=b^2作切线PA、PB,A、B为切点,问是否存在点P,使PA⊥PB?若存在,求出点P坐标;若不存在请说明理由.(高二选修1-1
xSJ@~aIf ,ŽIj6lhV  ƶZ؇ЙLzWؓV${^x99IdDU]n1b.A9(a*on!ozuds{4,=úɂCPq[6}h1csiP @L@tFWZא2}ꧽYX@QjggAt^NݻۏuTQ/;Lʻt!M?{Yiy4ACH(.AQE-1þh;|t|ϯ_e pIhNk.vq sۑxFy/{<1ASDr'&`\B~)}

椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e,P为E上一点,从P向圆x^2+y^2=b^2作切线PA、PB,A、B为切点,问是否存在点P,使PA⊥PB?若存在,求出点P坐标;若不存在请说明理由.(高二选修1-1
椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e,P为E上一点,从P向圆x^2+y^2=b^2作切线PA、PB,A、B为切点,
问是否存在点P,使PA⊥PB?若存在,求出点P坐标;若不存在请说明理由.(高二选修1-1

椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e,P为E上一点,从P向圆x^2+y^2=b^2作切线PA、PB,A、B为切点,问是否存在点P,使PA⊥PB?若存在,求出点P坐标;若不存在请说明理由.(高二选修1-1
设P点坐标(x1,y1),PA、PB的斜率为k和-1/k,直线方程分别为:y=kx+y1-kx1,y=-x/k+y1+x1/k,与x^2+y^2=b^2组成方程组,相切Δ=0,解得:b²+b²k²-(y1)²+2kx1y1-k²(x1)²=0,b²+b²k²-k²(y1)²+2kx1y1-(x1)²=0,(y1)²=(x1)²,代入得:(x1)²/a²+(y1)²/b²=1,(x1)²=(y1)²=a²b²/(a²+b²),则x1=±ab/√(a²+b²),y1=±ab/√(a²+b²),P坐标为(ab/√(a²+b²),ab/√(a²+b²),)、(-ab/√(a²+b²),ab/√(a²+b²),)、(-ab/√(a²+b²),-ab/√(a²+b²),)和(ab/√(a²+b²),-ab/√(a²+b²),).

如何从椭圆的一般方程求椭圆的五个参数已知椭圆一般方程为A*x^2+B*x*y+C*y^2+D*x+E*y+F=0,其中A,B,C,D,E,F,均不为0,现在要去求椭圆的中心坐标(x0,y0),椭圆的长半轴a,椭圆的短半轴b,以及椭圆长半轴与X 定义 离心率e=(根号5-1)/2的椭圆为黄金椭圆 对于椭圆x平方/a平方+y平方/b平方=1(a>b>0).c为椭圆半焦距 如果a.b.c不成等比数列 则椭圆 a.一定是黄金椭圆 b 一定不是黄金椭圆c 可能是黄金椭圆d 可能 椭圆x^2/a^2+y^2/b^2=1的离心率e=根号下3/2,a+b=3.求椭圆方程 圆椎曲线数学题已知椭圆x^/a^+y^/b^=1和直线x/a-y/b=1,椭圆离心率e=根号6/3,直线与坐标原点距离为根号3/2,求椭圆方程 已知椭圆E:x^2/a^2+y^2/b^2=1的离心率为1/2,直线x=2被椭圆E截得的弦长为6,设F的椭圆E的右焦点,A为椭圆E的左顶点.求椭圆E的方程 椭圆x^2/a^2+y^2/b^2=1,F1F2为焦点,P在椭圆上若角F1PF2=60度 求e范围 已知椭圆E的方程为2x平方+y平方=2,过椭圆E的一个焦点的直线l交椭圆于A,B两点,求椭圆E的长轴和短轴的长 椭圆x^2/a^2+y^2/b^2=1的e=√3/2 椭圆与直线x+2y+8=0交于P、Q两点切|PQ|=√10 求椭圆方程 已知椭圆E的方程为2x平方+y平方=2,过椭圆E的一个焦点的直线l交椭圆于A,B两点,求三角形的面积最大值 椭圆x^2/a^2+y^2/b^2=1,(a>b>0)的半焦距为c,若点(c,2c)在椭圆上,则椭圆的离心率e 设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两焦点为F1,F2,若在椭圆上存在一点P,使PF1⊥PF2,求椭圆离心率e的范围 设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0 设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0 设 F1 F2,分别是椭圆E:x^2 +y^2/b^2 =1(0 椭圆a²x²+b²y²=c²(a,b,c>0),其中a=2b,则离心率e= 已知椭圆E:x^2/9+y^2/4=1,若椭圆E上存在两点A,B关于直线l:y=2x+m对称,求m的取值范围 ·椭圆x^2/25+y^2/9=1,P(x,y)为椭圆上任一点,x^2/a^2+y^2/b^2=1存在P使角F1PF2=120度 求e范围 已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,直线x=2被椭圆E截得斜长为6,设F为椭圆E的右焦点,A为椭圆E的左顶点,(1) 求椭圆E的方程 (2) 求过点A,F,并与直线L:c=a^2/c相切的圆的方程