如图,菱形OABC放在平面直角坐标系内,点A在x轴的正半轴上,点B在第一象限,其坐标为(8,4).抛物线y=ax2+bx+c过点O、A、C.(2)将菱形向左平移,设抛物线与线段AB的交点为D,连接CD.①当点C又在

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:54:37
如图,菱形OABC放在平面直角坐标系内,点A在x轴的正半轴上,点B在第一象限,其坐标为(8,4).抛物线y=ax2+bx+c过点O、A、C.(2)将菱形向左平移,设抛物线与线段AB的交点为D,连接CD.①当点C又在
xVIO#G+ٖؽ1Be$bn ai 32I,6 i~@~6'Bj!"%L}2hn6r6n8MuBﯞOt̹W5:;#SVݘvRkR`**ԮLʻOKv\҂\¦;[} #y)>!  ^hi!5&ΛARįs~Hʮ >h N0qe6~ ̌~WW%BE!༽uSЙ3onp{\ yw+ x mId\7uaQ-Zz("d5ܺ֘&| VvL #~CP+ _laMԎETR1ʂ>9.k8k}C֗O%u$V!_^.#$!%ea)#)Ql {V9r~r+7@KbIj_Gj@yhhtZp7>5-asDJ ms*YήJ1WͱJ&[PJp70>*DGͪۂ~,vzr~فGkCc@fD%oS1|'JqbWa }m5t0M3dc2(ģ`+ alD8Ib-'UKK B>ay49*^`* IR@ PI2Jj,)xBL5K]$no@/"P[8YZ,f3X@~>H_m0QĤd3C կe lQkċ&k0EcX3 .=pK"rpP!];DUyg-i O13}}=3'O?O?

如图,菱形OABC放在平面直角坐标系内,点A在x轴的正半轴上,点B在第一象限,其坐标为(8,4).抛物线y=ax2+bx+c过点O、A、C.(2)将菱形向左平移,设抛物线与线段AB的交点为D,连接CD.①当点C又在
如图,菱形OABC放在平面直角坐标系内,点A在x轴的正半轴上,点B在第一象限,其坐标为(8,4).抛物线y=ax2+bx+c过点O、A、C.
(2)将菱形向左平移,设抛物线与线段AB的交点为D,连接CD.
①当点C又在抛物线上时求点D的坐标;
②当△BCD是直角三角形时,求菱形的平移的距离

如图,菱形OABC放在平面直角坐标系内,点A在x轴的正半轴上,点B在第一象限,其坐标为(8,4).抛物线y=ax2+bx+c过点O、A、C.(2)将菱形向左平移,设抛物线与线段AB的交点为D,连接CD.①当点C又在
过B作BB'⊥X轴于B',则OB'=8,BB'=4,OA=AB,
∴AB'=8-AB,在RTΔ'ABB'中,AB^2=AB'^2+BB'^2,
∴AB^2=64-16AB+AB^2+16,AB=5,
∴A(5,0),C(3,4),代入二次函数解析式:
0=c
0=25a+5b+c
4=9a+3b+c
解得:a=-2/3,b=10/3,c=0,
解析式为:Y=-2/3X^2+10/3X,
⑵①Y=-2/3X^2+10/3X=-2/3(X-5/2)^2+25/6,对称轴为X=5/2,
平移后C在抛物线上,纵坐标依然是4,令Y=4得:X=2,∴C'(2,4),
即菱形向左平移了一个单位长度,∴A成为(4,0)、B成为(7,4),
直线AB解析式:Y=4/3X-16/3,
联立方程组:
Y=-2/3X^2+10/3X,
Y=4/3X-16/3
解得:X=(3+√41)/2,Y=(2√41-10)/3,(取正)
即D( (3+√41)/2,(2√41-10)/2)
②当CD⊥AB时,过D作DD'⊥X轴于D',则RTΔBCD∽RTΔADD',CD=BB'=4,∴BD=3,
∴AD=2,又AD'/AD=3/5,DD'/AD=4/5,∴AD'=6/5,DD'=8/5,
令Y=8/5代入抛物线解析式:8/5=-2/3/X^2+10/3X,5X^2-25+12=0,
解得X=(25±√385)/10,
∴平移距离:5-(25±√385)/10,
即(25±√385)/2个单位长度.

过B作BE⊥OA于E,过C作CF⊥OA于F
由B(8,4),菱形OABC
可得AB+AE=OA+AE=8,BE=4
又因为AE2+BE2=AB2
解得AO=AB=5(2分)
∴A(5,0)
∵OC=5,CF=BE=4,
由勾股定理得OF=3.
∴C(3,4).
所以过O、A、C三点的抛物线解析式是y=-
23x2+

全部展开

过B作BE⊥OA于E,过C作CF⊥OA于F
由B(8,4),菱形OABC
可得AB+AE=OA+AE=8,BE=4
又因为AE2+BE2=AB2
解得AO=AB=5(2分)
∴A(5,0)
∵OC=5,CF=BE=4,
由勾股定理得OF=3.
∴C(3,4).
所以过O、A、C三点的抛物线解析式是y=-
23x2+
103x(2分);
(2)①当y=4时,-
23x2+
103x=4
解得x1=3(舍去),x2=2(1分).
所以菱形向左平移了1个单位长度直线AB也向左平移了1个单位长度
原直线AB为:y=
43x-
203
则平移后的直线为y=
43(x+1)-
203=
43x-
163
此时点D的坐标为方程组的解
可得点D坐标为(3+
412,2
41-103)
(点(3-
412,-2
41-103)不合题意舍去)
②当△BCD是直角三角形时
点D到BC的距离是125,则点D的纵坐标为4-
125=
85
当y=
85时-
23x2+
103x=
85
解得x1=
25+
38510x2=
25-
38510
原直线AB:y=
43x-
203上有一点(315,85)
所以菱形移动的距离为37±
38510

收起

如图,OABC是一张放在平面直角坐标系中的矩形纸片 如图 ,一张矩形纸片OABC平放在平面直角坐标系内. 如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为坐标原点,点A在 如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则点C的坐标和菱形的面积是什么 如图6,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则点C的做标为 如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则点C的坐标 求过称 菱形OABC在平面直角坐标系中的位置如图,若OA=2,角AOC=45度,求点B的坐标 (在线等秒回采纳)如图1,在平面直角坐标系中,菱形OABC的定点A的坐标为(2,0) 如图在平面直角坐标系中点b的坐标4、2若四边形oabc为菱形则点a的坐标为多少? 如图,菱形OABC放在平面直角坐标系内,点A在x轴的正半轴上,点B在第一象限,其坐标为(8,4).抛物线y=ax2+bx+c过点O、A、C.(2)将菱形向左平移,设抛物线与线段AB的交点为D,连接CD.①当点C又在 如图,一张矩形纸片0ABC平放在平面直角坐标系内,O为原点,点A在x轴的正半轴上一张矩形纸片OABC放在平面直角坐标系内,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,且满足根号OA的平方-5+OC 如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=2/x的图像上则菱形的面积为 如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,0)顶点A在函数y=12/x(x>0)图像上求菱形的边长 如图,将平行四边形OABC放置在平面直角坐标系XOY内,已知AB边所在直线的解析式为Y=-X+4 如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为顶点,A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=3如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为顶点,点A在x轴的正半轴上,点C在y 如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上如图①,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4. 如图,长方形OABC中,O为平面直角坐标系的原点,A,C两点的坐标分别为(3,0),(0,5),点B在第一象限内.如图,长方形OABC中,O为平面直角坐标系的原点,A,C两点的坐标分别为(3,0),(0,5),点B在第一象限内.①【 如图,长方形OABC中,O为平面直角坐标系的原点,A,C两点的坐标分别为(3,0),(0,5),点B在第一象限内.如图,长方形OABC中,O为平面直角坐标系的原点,A,C两点的坐标分别为(3,0),(0,5),点B在第一象限内