求曲线围成图形绕x轴与Y轴的旋转体体积求曲线y=x^2/3(x的三分之二次幂)与y=x围成的图形分别绕X和Y轴旋转一周的旋转体体积(请注明解题过程)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:21:24
求曲线围成图形绕x轴与Y轴的旋转体体积求曲线y=x^2/3(x的三分之二次幂)与y=x围成的图形分别绕X和Y轴旋转一周的旋转体体积(请注明解题过程)
xTKOQ+w9cF& ?EML&mXtٍR`(P*V|TyO?9wfVy`YIws5@7hBo!E4oW;Y]iKsnj(I/c$њ1P#Z+7iZ,`8z%^7تZ17FF,^wckџՀ78ך =2^kk $-6AdzK6 {M 5!SنW]RҚqK'+駼%lP]vXہ2nva DKT !H\JSpzG6@Gc;)ݩ'YXm` [D ̻a}v8Pxߘie2L0vŚNNzn]猪p !ڦ 6Ъ:e9j,>>σGB 㳬OymkV߼+Z,0( $Q$ )884tqJw Hx.f͝wi9U"f]p,YlƭOfĒ VI`ˌC 2ᢚZY(AYYy: {mT=mp8w3o=fI̹iMp <;dFF4e Spl|\UǾh g@Z4qynF,82ࣆ⛈28$K ;qqSf7c7Eo

求曲线围成图形绕x轴与Y轴的旋转体体积求曲线y=x^2/3(x的三分之二次幂)与y=x围成的图形分别绕X和Y轴旋转一周的旋转体体积(请注明解题过程)
求曲线围成图形绕x轴与Y轴的旋转体体积
求曲线y=x^2/3(x的三分之二次幂)与y=x围成的图形分别绕X和Y轴旋转一周的旋转体体积(请注明解题过程)

求曲线围成图形绕x轴与Y轴的旋转体体积求曲线y=x^2/3(x的三分之二次幂)与y=x围成的图形分别绕X和Y轴旋转一周的旋转体体积(请注明解题过程)
图我这里就不画了 曲线y=x^2/3是一个以原点为顶点 y为对称轴 x>0时 单调递增 开口向下的二条抛物线
与y=x交点为(1,1)
绕y轴旋转体积:
y=x绕y轴体积(这是个圆锥体) 减去 y=x^2/3即x=y^3/2绕y轴旋转体积
符号不好打 下面用∫(0,1) 表示从0积到1
V1=1/3πr^2*h-∫(0,1)πr^2dy
=π/3-∫(0,1)πy^3dy
=π/3-πy^4/4(0,1)
=π/3-π/4
=π/12
绕x轴:
y=x^2/3即x=y^3/2绕x轴旋转体积 减去 y=x绕y轴体积(刚求出来是π/3)
V2=∫(0,1)πR^2dx-π/3
=∫(0,1)πx^4/3dx-π/3
=(3πx^7/3)/3(0,1)-π/3
=π-π/3
=2π/3

令x^(2/3)=x得,x=0,或x=1,所以我想你是要算x∈[0,1]内的图形转出的体积.
先积分算面积S:
S=∫[0,1](x^(2/3) - x) dx=1/10
再求质心(或者理解成重心)坐标(M,N):
∫[0,1](x^(2/3) - x) x dx=1/24
求反函数,用y表示x,得x=y,x=y^(3/2)
∫[0,1]...

全部展开

令x^(2/3)=x得,x=0,或x=1,所以我想你是要算x∈[0,1]内的图形转出的体积.
先积分算面积S:
S=∫[0,1](x^(2/3) - x) dx=1/10
再求质心(或者理解成重心)坐标(M,N):
∫[0,1](x^(2/3) - x) x dx=1/24
求反函数,用y表示x,得x=y,x=y^(3/2)
∫[0,1](y - y^(3/2)) y dy=1/21
M=1/24/(1/10)=5/12
N=1/21/(1/10)=10/21
根据古鲁金定理,
绕x轴的体积为2π*N*S= (2 π)/21
绕y轴的体积为2π*M*S= π/12

收起

一道高数旋转体题求曲线y=根号X与y=X方所围平面图形绕X轴旋转所得旋转体的体积 求由曲线y=√x与直线y=x所围平面图形绕x轴旋转一周而成的旋转体的体积 求由曲线y=x平方与y=x所围的成图形绕x轴旋转一周所得旋转体的体积 求由曲线y=x²与x=y²所围成图形绕x轴旋转一周所生成的旋转体体积. 求由曲线y=x平方与x=3所围成的平面图形绕x轴旋转一周形成的旋转体的体积.急 求旋转体体积求抛物线y=x(2-x)与x轴所围成的图形绕x轴旋转而成的旋转体的体积 求旋转体的体积:由曲线(y=x的平方)与y=x所围成的图形分别绕x轴,y轴旋转一周而成的旋转体?$(acontent) 求曲线y=x^2与x=1,y=0所围图形分别绕x轴和y轴旋转所得旋转体的体积 旋转体体积计算抛物线 x=5-y^2与直线 x=1 围成的图形绕 Y 轴旋转,求旋转体体积. 求曲线围成图形绕x轴与Y轴的旋转体体积求曲线y=x^2/3(x的三分之二次幂)与y=x围成的图形分别绕X和Y轴旋转一周的旋转体体积(请注明解题过程)   求曲线y=x^2与y平方等于x所围平面图形绕y轴旋转一周所得旋转体的体积 求由曲线y=-4x^2+4x与x轴所谓平面图形绕y轴旋转一周而成的旋转体的体积V 求曲线y=x^2与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积 求曲线y等于根号下x与y=x-2,y=0所围成图形的面积s及该图形绕x轴旋转而成的旋转体的体积v 求曲线y=x^2,x=y^2所围成的图形绕y轴旋转所得旋转体的体积 将由曲线y=x和y=x^2所围成的平面图形绕x轴旋转一周,求所得旋转体的体积 求由曲线y=x平方,x=y平方,所围成的图形绕x轴旋转产生的旋转体体积 高数旋转体一个平面图形A:是由曲线Y=e^x下方,该曲线过原点切线的左方,还有X轴上方围成的图形.求:1.图形绕X轴旋转的旋转体体积2.图形绕x=1旋转的旋转体体积