如果△ABC内接于半径为R的圆,且2R(sin^2 A-sin^2 B)=(√2a-b)sinB,求△ABC的面积的最大值.已经求出C=45度,边C=根号2*R

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:40:12
如果△ABC内接于半径为R的圆,且2R(sin^2 A-sin^2 B)=(√2a-b)sinB,求△ABC的面积的最大值.已经求出C=45度,边C=根号2*R
xS[KA+>ŎtO$/ abE$/cijSqf Jo sΜrA-n>F?@*ifc# [&=CPJ9ǽ

如果△ABC内接于半径为R的圆,且2R(sin^2 A-sin^2 B)=(√2a-b)sinB,求△ABC的面积的最大值.已经求出C=45度,边C=根号2*R
如果△ABC内接于半径为R的圆,且2R(sin^2 A-sin^2 B)=(√2a-b)sinB,求△ABC的面积的最大值.
已经求出C=45度,边C=根号2*R

如果△ABC内接于半径为R的圆,且2R(sin^2 A-sin^2 B)=(√2a-b)sinB,求△ABC的面积的最大值.已经求出C=45度,边C=根号2*R
2R(sin²A-sin²C)=(√2a-b)sinB
(2R)²sin²A-(2R)²sin²C=(√2a-b)*(2R)SinB
a²-c²=(√2a-b)b=√2ab-b²
a²+b²-c²=√2ab
cosC=(a²+b²-c²)/(2ab)=√2/2
C=45度
c=2RsinC=√2R
c²=2R²=a²+b²-√2ab≥(2-√2)ab……a=b时取等号
ab≤2R²/(2-√2)=(2+√2)R²
S=(1/2)absinC=(√2/4)ab≤[(√2+1)/2]R²
即:三角形ABC的面积的最大值=[(√2+1)/2]R² (此时a=b)

2R(sin²A-sin²C)=(√2a-b)sinB
(2R)²sin²A-(2R)²sin²C=(√2a-b)*(2R)SinB
a²-c²=(√2a-b)b=√2ab-b²
a²+b²-c²=√2ab
cosC=(a²+b&...

全部展开

2R(sin²A-sin²C)=(√2a-b)sinB
(2R)²sin²A-(2R)²sin²C=(√2a-b)*(2R)SinB
a²-c²=(√2a-b)b=√2ab-b²
a²+b²-c²=√2ab
cosC=(a²+b²-c²)/(2ab)=√2/2
C=45度
c=2RsinC=√2R
c²=2R²=a²+b²-√2ab≥(2-√2)ab……a=b时取等号
ab≤2R²/(2-√2)=(2+√2)R²
S=(1/2)absinC=(√2/4)ab≤[(√2+1)/2]R²

收起

如果△ABC内接于半径为R的圆,且2R(sin2A-sin2C)=(根号2a-b)sinB,求△ABC的面积的最大值 如果三角形ABC内接于半径为R的圆,且2R(sin*2A-sin*2C)=(根号2a-b)sinB,求三角形ABC面积的最大值. ..如果▲ABC内接于半径为R的圆,且2R〔sinA^2-sinC^2〕=〔〔根号2a〕-b〕sinB.求▲ABC的面积最大值 如果三角形ABC内接于半径为R的圆,且2R(sin²A-sin²C)=(√2a-b)sinB,求三角形ABC面积最大值 锐角三角形abc内接于圆o,圆o的半径为r,求证正铉定理=2r 如果△ABC内接于半径为R的圆,且2R(sin^2 A-sin^2 B)=(√2a-b)sinB,求△ABC的面积的最大值.已经求出C=45度,边C=根号2*R 若三角形ABC内接于半径为R的圆,且2R(sin^2A-sin^2C)=(根号2a-b)sinB,求三角形的最大面积?一定要过程,谢谢啊. 三角形ABC内接于半径为R的圆,且2R(sin平方A-sin平方C)=((根号2)·a-b)·sinB求三角形面积最大值 半径为R的圆外接于△ABC,且2R(sin^2A-sin^2C)=(根号3*a-b)sinB,求角C 1,如果△ABC内接于半径为R的圆,且2R(sin²A-sin²C)=(根号2-b)sinB,求△ABC面积的最大值.2,数列﹛an﹜的前n项和Sn,且a₁=1,an+1=三分之一Sn,n=1,2,3.(1)a2,a3,a4的值及﹛an﹜的通项公式(2)a2+a4 如图:等腰三角形ABC内接于圆O,半径R=5,AB=AC,且tgB=三分之一,求BC的长2 设△ABC是半径为R的圆的内接三角形,且AB=AC,AD⊥BC于D,求AD+BC的最大值如题. 内接于半径为R的圆的内接四边形面积最大 半径为R的圆外接于三角形ABC,且2R(sin平方A-sin平方C)=(根号三a-b)*sinB,求∠C具体 已知等边三角形ABC内接于圆O,BD为内接正十二边形的一边,CD=5倍根号2,求圆O的半径R 半径为R的圆外接于△ABC,且2R(sin²A-sin²C)=(√3a-b)sinB(1)求角C (2)求△ABC面积的最大值 三角形ABC内接于半径为R的圆O,且AB=AC,AD为底边BC上的高,则AD+BC的最大值为多少 如图一个半径为r的圆O,内切于一个等腰直角三角形ABC,一个半径为R,那么R比r好的5分一个半径为R的圆O外接于这个三角形,那么R比r