求一道数学题解答,关于微分中值定理的f(x)在(a,b)上连续可导,且f(x)不等于0,又f(a)=f(b),证明 对任意实数α存在x0使f'(x0)=αf(x0)答案似乎是构造g(x)=e^(-αx)f(x)但是还是不会做啊,g(x)又不

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:52:47
求一道数学题解答,关于微分中值定理的f(x)在(a,b)上连续可导,且f(x)不等于0,又f(a)=f(b),证明 对任意实数α存在x0使f'(x0)=αf(x0)答案似乎是构造g(x)=e^(-αx)f(x)但是还是不会做啊,g(x)又不
xRjP@|n]ve,VT }ؖD+hb?BWB')( w9s8R:NGwQW* 5dZo qLP=cͬ4eYBLbN?2S~#NyAd>!d>)F{B\fuHb1JDb$7Ң}xanvR"Į.bM 'B & bjK[]JD~x( 6k9HM}:5`Xvv!Eqe9]5,anvv;>;9`AbK_{mvֲp/~B$ rTbXܦ?\$

求一道数学题解答,关于微分中值定理的f(x)在(a,b)上连续可导,且f(x)不等于0,又f(a)=f(b),证明 对任意实数α存在x0使f'(x0)=αf(x0)答案似乎是构造g(x)=e^(-αx)f(x)但是还是不会做啊,g(x)又不
求一道数学题解答,关于微分中值定理的
f(x)在(a,b)上连续可导,且f(x)不等于0,又f(a)=f(b),证明 对任意实数α存在x0使f'(x0)=αf(x0)
答案似乎是构造g(x)=e^(-αx)f(x)但是还是不会做啊,g(x)又不相等,没法用罗尔定理…………

求一道数学题解答,关于微分中值定理的f(x)在(a,b)上连续可导,且f(x)不等于0,又f(a)=f(b),证明 对任意实数α存在x0使f'(x0)=αf(x0)答案似乎是构造g(x)=e^(-αx)f(x)但是还是不会做啊,g(x)又不
“求一道数学题解答,关于微分中值定理的
5 - 离问题结束还有 14 天 23 小时
f(x)在(a,b)上连续可导,且f(x)不等于0,又f(a)=f(b),证明 对任意实数α存在x0使f'(x0)=αf(x0)
答案似乎是构造g(x)=e^(-αx)f(x)但是还是不会做啊,g(x)又不相等,没法用罗尔定理…………”
===----题目不对.若f(x)=C,你的结论不成立.