一道微分中值定理题目若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:55:49
一道微分中值定理题目若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ,
xR_KP*BLz)h۾DԃTH8Cbhͤ"2"5M'; R^zzs~1R'sېKu:=&^BCjƹ$MQ},9,y(` @˸?',qEs"WJ+ FKAx.e`7g8F7pG_9DppU|Za W8 Ka r:AVw"?|=ÌçRS(o*x#g4h=͂tzTGEjUN/nuC$b?fQP|cɨwi JO M%c %C$3ȴ1[ܳo;-s퉳f%m0B oݼ$iE,09r9K

一道微分中值定理题目若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ,
一道微分中值定理题目
若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.
这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ,使得F'(ξ)=0,但要证F''(ξ)=0,还应该有一点的一阶导数也等于0呀.怎么个证法?

一道微分中值定理题目若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ,
看F(x)在x=1处的右导数,
F‘(1)=lim (x-1)²f(x) /(x-1)
=lim (x-1)f(x)
=lim (x-1) lim f(x)
=0·f(1)
=0
这就是第二个你要找的导数为0的点

一道微分中值定理题目若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ, 一道关于微分中值定理的证明题求解是一道关于微分中值定理的证明题,题目:设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+ f(1)+ f(2)=3,f(3)=1,试证必存在ξ在(0,3)内,使f(ξ)=0.哪位大 微分中值定理的一道题设f(x)和g(x)都是可导函数,且|f'(x)| 问一道关于微分中值定理的数学题设函数f(x)在[0,1]上连续,在区间(0,1)上可导,且有f(1)=2f(0),证明在(0,1)内至少存在一点m,使得(1+m)f'(m)=f(m)成立.要用微分中值定理来做, 微分中值定理习题若函数f(x)在(a,b)内有二阶导数,且f(x1)=f(x2)=f(x3),其中a 高数一道微分中值定理证明题已知函数f在[a,b]上连续,在(a,b)内可导,且0 mathematica 验证:拉格朗日微分中值定理对函数f(x)=sin(x)-x-1 在区间[ 0,1 ]上的正确性提示:用Solve函数 函数f(x)=x^3-x在[0,2]上满足拉格朗日微分中值定理的ξ=麻烦写个步骤,谢谢,感谢! 费尔马定理:f(x)< =f(x0) 或者 f(x)> =f(x0),且f(x)在x0处可导,则 f(x0)的导数 = 0; 这是微分中值定理中的当函数单调时它满足吗? 一道关于高等数学微分中值定理的证明题目. 微分中值定理的题目 题目(1):对函数f(x)=X^3,g(x)=X^2+1在区间[0,∏/2]上验证柯西中值定理的正确性.题目(2):应用拉格朗日微分中值定理证明下列不等式:当x>1时e^x>ex说明:X^3表示x的三次方..X^2表示x的二次方..e^X表示e的X 高数微分中值定理已知函数f(x)在[a,b]内连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在一点ζ使得f(ζ)+f'(ζ)=0成立 是一道关于微分中值定理的证明题,设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+ f(1)+ f(2)=3,f(3)=1,试证必存在ξ,使f(ξ)=0. 大学微分中值定理题目证明:设f(x)为n阶可导函数,若方程f(x)=0有n+1个相异实根,则方程[f(x)]^n至少有一个跟.不好意思,应该是[f(x)]^(n),即f(x)的n阶导数,上面打错了 证:若f(X)在负无穷大到正无穷大内导数恒为常数,则f(X)在负无穷大到正无穷大内是一线性函数,即f(X)=ax+b微分中值定理 微分中值定理证明问题已知函数f(x)在[0,1]上连续,在(0,1)上可导,f(0)=1,求证:在(0,1)内至少存在一点c,使得f'(c)=-f(c)/c 求函数分f(x)=x^2 在区间[0,1]上满足拉格朗日中值定理的中值