已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.当三角板绕点C旋转时(如图一),易证:CD=CE当
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 13:42:01
kT+ն8p՝ ?lf6H.#DyDtk)gpEHGb<K6CI%Wo=É֖dmdqđi0p očmHu&-HggN; NY-e2l [I$M{Pڦ+4A̤"<XhG4 +-hg9ĽM:i|"ϧ~&jfwB0wЪnwXBP= sJv$!L"(К6g]\O1.vi~ +3*;Ѵ4sD:-6pch>9)yd'&ҫt+G!k528A_u`?ش%,/%]p $PW]q /LVm|*U^R?e1w>pOtڟAEwN5A xs\.` "V~39WUWP8^I| 逘.<已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.当三角板绕点C旋转时(如图一),易证:CD=CE当
已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.
当三角板绕点C旋转时(如图一),易证:CD=CE
当三角板绕点C旋转到CD与OA不垂直时,在图二、图三这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.
用初一学过的方法解,不要用勾股定理已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.当三角板绕点C旋转时(如图一),易证:CD=CE当
1)CD与OA垂直时,根据勾股定理易得OC与OD、OE的关系,将所得的关系式相加即可得到答案.
(2)当三角板绕点C旋转到CD与OA不垂直时,易得△CKD ≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC与OD、OE的关系;最后转化得到结论.(1)当CD与OA垂直时,
∵△CDO为Rt△,
∴OC= ,
∴ ,
而OD+OE=OD+OD=2OD,
∴OD+OE= .
(2)过点C分别作CK⊥OA,CH⊥OB,
∵OM为∠AOB的角平分线,且CK⊥OA,CH⊥OB,
∴CK=CH,∠CKD=∠CHE=90°,
又∵∠1与∠2都为旋转角,
∴∠1=∠2,
∴△CKD ≌△CHE,
∴DK=EH,
∴OD+OE=OD+OH+EH=OD+OH+DK=OH+OK.
由(1)知:OH+OK= ,
∴OD+OE= .
(图3)结论不成立.
OD,OE,OC满足 .