谁能给我解释下牛顿-莱布尼茨公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:36:39
谁能给我解释下牛顿-莱布尼茨公式
xUN@Jb8гU:sg?GI}ղ"gC%{]7ccߢu =RKδKa:~>%a.Ȗkm=_w KnΊ!_peeuXn f(qLL^7ثD$Qr*mtcFGz%feCIqE5QLI1?1#pm`&TAL}S7Y߶ _`M64csnJdN'1L 6bGaco},tɬ} qd>\px;5OS)2i%4 $HJqHDKOXǗ}̰"K(j[c;ϑfUE#_ 

谁能给我解释下牛顿-莱布尼茨公式
谁能给我解释下牛顿-莱布尼茨公式

谁能给我解释下牛顿-莱布尼茨公式
我们知道,对函数f(x)于区间【a,b】上的定积分表达为:
b(上限)∫a(下限)f(x)dx
现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:
Φ(x)= x(上限)∫a(下限)f(x)dx
但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的.为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:
Φ(x)= x(上限)∫a(下限)f(t)dt
接下来我们就来研究这个函数Φ(x)的性质:
1、定义函数Φ(x)= x(上限)∫a(下限)f(t)dt,则Φ’(x)=f(x).
证明:让函数Φ(x)获得增量Δx,则对应的函数增量
ΔΦ=Φ(x+Δx)-Φ(x)=x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt
显然,x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=x+Δx(上限)∫x(下限)f(t)dt
而ΔΦ=x+Δx(上限)∫x(下限)f(t)dt=f(ξ)•Δx(ξ在x与x+Δx之间,可由定积分中的中值定理推得,
也可自己画个图,几何意义是非常清楚的.)
当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有lim Δx→0 ΔΦ/Δx=f(x)
可见这也是导数的定义,所以最后得出Φ’(x)=f(x).
2、b(上限)∫a(下限)f(x)dx=F(b)-F(a),F(x)是f(x)的原函数.
证明:我们已证得Φ’(x)=f(x),故Φ(x)+C=F(x)
但Φ(a)=0(积分区间变为【a,a】,故面积为0),所以F(a)=C
于是有Φ(x)+F(a)=F(x),当x=b时,Φ(b)=F(b)-F(a),
而Φ(b)=b(上限)∫a(下限)f(t)dt,所以b(上限)∫a(下限)f(t)dt=F(b)-F(a)
把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式.