1.将明命题"全等三角形对应边上的高线相等“写成”已知“”求证“的形式,并给出证明.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:31:44
xRYo@+R^"#ʿ v*V
(Jۨ DE=SCH_,/O]{9ES^vgg;fRڨ_<ݸ:m?}^Mo۷aS= ֨Ω߽xU%a0|s`Ja }aLڟ]\/"y~>"?vbPo?
Qa
T)6EjUqT
Fսf/dLJrilϟᶤ^ٓS0Wj09%EXh#h~SjȢQI}(!KMKJqh>ΧLv҅ӊ_DN z0p?,#/EәY闤8[9Mg}#)*SdNٜ?x/A{X<"TV'Z,FOY*obĬTJq71*J隕{5i"\ T .s<4Ih,k0<
TY 8M2y%kh9҈A4<!9tQ Z^`0&(cCtJ`i^p]
1.将明命题"全等三角形对应边上的高线相等“写成”已知“”求证“的形式,并给出证明.
1.将明命题"全等三角形对应边上的高线相等“写成”已知“”求证“的形式,并给出证明.
1.将明命题"全等三角形对应边上的高线相等“写成”已知“”求证“的形式,并给出证明.
已知两个三角形全等,求证其对应边上的高线相等
因为两个三角形全等,则对应边相等,面积也相等
面积=底边*高/2
高=2*面积/底边
所以对应边上的高线相等
已知:三角形ABC≌三角形A`B`C`,AD,A`D`分别是BC,B`C`边上的高,求证:AD=A`D`.
因为全等,所以角B=角B`,AB=A`B`
所以三角形ABD≌三角形A`B`D`
所以AD=A`D`
已知:△ABD≌△EFH 求证:ED=EH 证明:△ABC≌于△EFG ∴∠B=∠F,AB=EF ∵AD⊥BC,EH⊥FG ∴∠ADB=∠EHF 在△ABD和△EFH中 ∵∠B=∠F,AB=EF,∠ADB=∠EHF 所以△ABD≌△EFH ∴ED=EH
1.将明命题全等三角形对应边上的高线相等“写成”已知“”求证“的形式,并给出证明.
1.命题:全等三角形的对应边上的中线相等,它的逆命题为( ),它是( )命题.
将命题“全等三角形对应边上的中线相等”写成“已知”“求证”的形式,并给出证明
“全等三角形对应边上的高相等”的逆命题是真命题还是假命题
证明命题全等三角形对应边上的高相等是真命题
全等三角形对应边上的中线相等 逆命题 真命题全等三角形对应边上的中线相等的逆命题是真命题吗
什么是逆命题?5.命题“全等三角形对应边上的高相等的逆命题是________________.
求证:有两角及这两角夹边上的高对应相等的两个三角形全等(请画出图形,将命题写成已知求证的形式后证明)
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@.下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其
1. 将下列命题改写成“如果.,那么.”的形式 (1)全等三角形的对应边相等
有两边及第三边上的高对应相等的两个三角形全等吗/、“有两边及第三边上的高对应相等的两个三角形全等”这一命题是否成立?若成立,请证之;若不成立,请试举一反例,并将命题作适当改
判断命题“两边及第三边上的高分别对应相等的两个三角形全等”的真假,并给出证明.
判断命题“两边及第三边上的高分别对应相等的两个三角形全等”的真假,并给出证明~
判断命题“有两条边及其中一条边上的高对应相等的两个三角形全等”的真假,并说明理由.
、“有两边及第三边上的高对应相等的两个三角形全等”这一命题是否成立?
、“有两边及第三边上的高对应相等的两个三角形全等”这一命题是否成立?
两边和其中一边上的高对应相等的两个三角形全等.是真命题吗?
两边及其一边上的高对应相等的三角形全等,两边及其一边上的中线对应相等的三角形全等.哪一个是真命题?两个判断,1两边及其一边上的高对应相等的三角形全等,2两边及其一边上的中线对应