△ABC的三个内角为A、B、C,当A为_______时,cosA+cos(B+C)/2取得最大值,且这个最大值是________

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:48:15
△ABC的三个内角为A、B、C,当A为_______时,cosA+cos(B+C)/2取得最大值,且这个最大值是________
x){4mY-Ovt>ٱi[哞 ugӷ$;j 'mgM}ӞlN%˟6ycʋ3XoTOK lȯ l u344 j bZ:8@6P-LXóΆ'lmV(57Y[~:{Kޅ`0 *sH MT@һE 0YM,$ف" i5

△ABC的三个内角为A、B、C,当A为_______时,cosA+cos(B+C)/2取得最大值,且这个最大值是________
△ABC的三个内角为A、B、C,当A为_______时,cosA+cos(B+C)/2取得最大值,且这个最大值是________

△ABC的三个内角为A、B、C,当A为_______时,cosA+cos(B+C)/2取得最大值,且这个最大值是________
cosA=1-2sin(A/2)^2;
cos(B+C)/2=cos(180-A)/2=cos(90-A/2)=sin(A/2)
所以cosA+cos(B+C)/2=1-2sin(A/2)^2+sin(A/2)=-2[sin(A/2)-1/4]^2+9/8;
因此当sin(A/2)=1/4时,最大值为9/8;
sinA=2sin(A/2)cos(A/2)=2*1/4*sqrt15/4=sqrt15/8;
即A为arcsin(sqrt15/8)时,最大值为9/8

如果A、B、C为△ABC的三个内角,则sin(B+C)/2= △ABC的三个内角为A、B、C,当A为_______时,cosA+cos(B+C)/2取得最大值,且这个最大值是________ 已知A,B,C为△ABC的三个内角,且A △ABC的三个内角为A,B,C.当A为什么时,cosA+2cos(B+C)/2取得最大值为什么? △ABC的三个内角为A,B,C,求当A为何值时,cosA+2cos(B+C)/2取得最大值,并求出这个最大值 已知△ABC的三个内角为A,B,C,当A为何值时,cosA+2cos{(B+C)/2}取得最大值?求出这个最大值 三角形ABC的三个内角为A,B,C, 当A为 几时 ,cosA+2cos(B+C/2)取最大值,最大值为多少? △ABC的三个内角为ABC,当A为何值时,cosA+2cos(B+C)/2的值最大?最大为多少 △ABC的三个内角为A,B,C,则cosA+2cos(B+C)/2的最大值为 已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且 设△ABC的三个内角为A,B,C三边长分别为a,b,c.求证:(a-b)/c=sin(A-B)/sinC 已知ABC为三角形ABC的三个内角 求证 cos(2A+B+C)=-cosA 已知三角形ABC中,A,B,C为三角形的三个内角,且A 在△ABC中,三个内角A、B、C成等差数列,则cos(A+C)的值为 △ABC的三个内角A.B.C成等差数列,abc分别为三个内角ABC所对的边,求证:1/a+b+1/b+c=3/a+b+c 在ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列在△ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列求证:△ABC为 已知a、b、c分别为△ABC的三个内角A、B、C的对边,且△ABC的面积S,(1)当2cosA/2+cos(B+C)取得最大值时,求A已知a、b、c分别为△ABC的三个内角A、B、C的对边,且△ABC的面积S,(1)当2cosA/2+cos(B+C)取得最大值 三角形ABC的三个内角为A,B,C,求当A为何值时,cosA+2cos(B+C)/2取得最大值,并求出这个最大值