被叫做最难的数学题是什么猜想来着?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 04:31:50
被叫做最难的数学题是什么猜想来着?
被叫做最难的数学题是什么猜想来着?
被叫做最难的数学题是什么猜想来着?
哥德巴赫猜想(Goldbach Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个n ³ 6之偶数,都可以表示成两个奇质数之和.
(b) 任何一个n ³ 9之奇数,都可以表示成三个奇质数之和.
这就是著名的哥德巴赫猜想.从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如:
6 = 3 + 3,8 = 3 + 5,10 = 5 + 5 = 3 + 7,12 = 5 + 7,14 = 7 + 7 = 3 + 11,
16 = 5 + 11,18 = 5 + 13,....等等.
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但验格的数学证明尚待数学家的努力.目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) ¾ “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式.
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称 “s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”.
1924年,德国的拉特马赫(Rademacher)证明了 “7 + 7 ”.
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”.
1937年,意大利的蕾西(Ricei)先后证明了 “5 + 7 ”,“4 + 9 ”,“3 + 15 ”和“2 + 366 ”.
1938年,苏联的布赫 夕太勃(Byxwrao)证明了 “5 + 5 ”.
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”.
1948年,匈牙利的瑞尼(Renyi)证明了 “1 + c ”,其中c是一很大的自然 数.
1956年,中国的王元证明了 “3 + 4 ”.
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”.
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”,
中国的王元证明了 “1 + 4 ”.
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了 “1 + 3 ”.
1966年,中国的陈景润证明了 “1 + 2 ”.
最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测.
简单介绍一下,最有名的哥德巴赫猜想,希望对你有所帮助.
最难的是被誉为“数学皇冠上的明珠”的哥德巴赫猜想,即任何一个大于4的偶数都可以写成两个奇素数的和,简写为1+1,可不是那些道听途说的人说的“一加一为什么等于二”的弱智问题。
哥德巴赫猜想至今无人证出,人们将它弱化为如下猜想,即任何一个大于4的偶数都可以写成m个奇素数的积与n个奇素数的积的和,人们的目标就是减小m与n值,直到m=n=1。目前最好的成绩是由我国数学家陈景润取得的,他证出了1+...
全部展开
最难的是被誉为“数学皇冠上的明珠”的哥德巴赫猜想,即任何一个大于4的偶数都可以写成两个奇素数的和,简写为1+1,可不是那些道听途说的人说的“一加一为什么等于二”的弱智问题。
哥德巴赫猜想至今无人证出,人们将它弱化为如下猜想,即任何一个大于4的偶数都可以写成m个奇素数的积与n个奇素数的积的和,人们的目标就是减小m与n值,直到m=n=1。目前最好的成绩是由我国数学家陈景润取得的,他证出了1+2。
收起
哥德巴赫猜想。
1+1=2
哥德巴赫猜想
3号好强,我一直蒙在鼓里