初二数学几何证明题(附图)B A E 和 C A D 三点不一定共线.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:32:26
初二数学几何证明题(附图)B A E 和 C  A   D  三点不一定共线.
xTnUQT{.\Sq@s 41uONU'qQ\ *jpƖ0c?s=^>gZdp;1#~^Vi{~J"T?n2۫yކ+\y] YA08%T.P%&U/z$>9++ŏS);/+˥7/a$2ORaqI$yHf҂A2A-86F׭P&ϑNF-a#ygxfgEbJK:ka'ZA3XF0)'9#33,{K-ЮT^pp;:wG-\& a WNӚy6nt_=Mm|vw#m OQntρ4foC (;+4@9iZٽ

初二数学几何证明题(附图)B A E 和 C A D 三点不一定共线.
初二数学几何证明题(附图)
B A E 和 C  A   D  三点不一定共线.

初二数学几何证明题(附图)B A E 和 C A D 三点不一定共线.
有定理吧.
首先,ADE和ABC是全等的直接三角形,还对称.
再次,直角三角形中斜边的中线等于斜边的一半.
ADE中斜边DE的中线 AN=AM
所以DE=2AM

延长AM做辅助线,使得AM=MN。

先证明三角形ABN与ADE全等:

通过三角形BNM与AMC全等,证明BN=AC=AE。

从而再加上角ADE=BAM,AB=AD,

证明了。

所以,DE=AN。

得证。

不知道怎么在这里敲进符号,就简单证明一下了。

延长AM到N,使MN=AM,连结BN
则∠ABN=∠ABC+∠NBM=∠ABC+∠ACB=180°-∠BAC
又∠DAE=180°-∠BAC
∴∠DAE=∠ABN
又∠ADE=∠BAN
AD=AB
∴△ADE全等于△BAN
∴DE=AN=2AM

∵∠BAD=CAE=90°,
∴∠BAC=180°-∠DAE=∠ADE+∠AED.
同理∠DAE=∠ABC+∠ACB.
在DE上截取DN=AM.连AN.
易知△DAN≌△ABM(SAS),
∴∠DAN=∠ABM,
∴∠EAN=∠ACM,∠AEN=∠CAM,
∴△EAN≌△ACM(ASA),
∴EN=AM.
∴DE=2AM.