什么叫不等式组的解集?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:22:31
什么叫不等式组的解集?
xXRGV.)4cid!̤p& PRbxKG)T& ggrnHl8U.}ﹷO{ˏ c FNX=^|%k:o|cbo'ش&ms¦EF\msek;Do{|Uf1}ۅ+t+U]Ǥ([sk gnd~qMQkv%[ 8Xڼ3LNt76u;L%Al$أ<P9#`p׺YX7uV(:4"'}4F Z`Ȱ CZbpH4db%,}߀xA;PU( W>T& ʊhZX?zqp6A"K߈ z!j</ E@ m14i+*M@I/ 4sGtsH@at~kaդDIiX2RA`HEFrgj!_= k|'WM|SFldhefx&Sʈ#w,miJkVAJ"jnku^o_ S@J z O05S:R'# aMFt766!qpv.Et &5Cj)fXdv*t>e(f+p)I ߿>),NY`iwxbƙ33!q4R$b@PhRu|S^Py.W~zg.ߐ'å. ͳ|}Mǟ |ިNho*؟k*ߏ:闂\W\}JmM“\A.RMe:צ1Ru k0Hu# Tz^ _&B3!?+ =趏n(h'bN?qH=F]:-<~'q%=qƕo+O卺= -$ +ppZ~:>]^''f k"I?@

什么叫不等式组的解集?
什么叫不等式组的解集?

什么叫不等式组的解集?
不等式
在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.
如:甲大於乙(甲>乙),就是一个不等式.不等式不一定只有「>」,「0,即A>B.又同理可证:A>C,A>D.所以,A最大.
不等式是不包括等号在内的式子比如:(不等号 大于等于号,小于等于号)只要用这些号放在式子里就是不等式咯..
1.符号:
不等式两边都乘以或除以一个负数,要改变不等号的方向.
2.确定解集:
比两个值都大,就比大的还大;
比两个值都小,就比小的还小;
比大的大,比小的小,无解;
比小的大,比大的小,有解在中间.
三个或三个以上不等式组成的不等式组,可以类推.
3.另外,也可以在数轴上确定解集:
把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.
1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,cd,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且abb;(真)
若|a|b2;(充要条件)
命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想
几个重要不等式(二)柯西不等式
,当且仅当bi=lai (1£i£n)时取等号
柯西不等式的几种变形形式
1.设aiÎR,bi>0 (i=1,2,…,n)则,当且仅当bi=lai (1£i£n)时取等号
2.设ai,bi同号且不为零(i=1,2,…,n),则,当且仅当b1=b2=…=bn时取等号
例1.已知a1,a2,a3,…,an,b1,b2,…,bn为正数,求证:
证明:左边=
例2.对实数a1,a2,…,an,求证:
证明:左边=
例3.在DABC中,设其各边长为a,b,c,外接圆半径为R,求证:
证明:左边³
例4.设a,b,c为正数,且a+b+c=1,求证:
证明:左边=
³
=
=
例5.若n是不小于2的正整数,试证:
证明:
所以求证式等价于
由柯西不等式有
于是:
又由柯西不等式有
0,则>0且a12³b12³c12>0

例4.设a1,a2,…,an是1,2,…,n的一个排列,求证:
证明:设b1,b2,…,bn-1是a1,a2,…,an-1的一个排列,且b1b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,cd,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且abb;(真)
若|a|b2;(充要条件)
命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.
练习:
1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)
2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)
3.判断下列命题的真假,并说明理由.
(1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真)
(3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真)
若a>b,c>d,则a-d>b-c.(真).