已知函数f(x)=log4(4^x+1)-1/2x是偶函数,g(x)=log4(a2^x-4a/3),若f(x)与g(x)的图像只有一个公共点,求a的取值范围抱歉。忘记讲了。答案是{-3},(1,正无穷)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 17:07:54
已知函数f(x)=log4(4^x+1)-1/2x是偶函数,g(x)=log4(a2^x-4a/3),若f(x)与g(x)的图像只有一个公共点,求a的取值范围抱歉。忘记讲了。答案是{-3},(1,正无穷)
xV[oH+p,x)UHɱZ8-#YrM U{ Ȟ"<{İDw޺!IkL6`H6Sf6PͰmݖ5| `sJ°iݓjAY5 -/M{i1[^:_Հc&EGP?Pn.PMΪPU\bamЫ6P.;t La{W vCq0eFtNƻޡkޠiQj٣C~[po]e;9e2MO2X5vb4!bFv'oݕܚ <{ tF*KYZ!G+Q!~I77eG[`OaΤᲿBg=~u\7aʄ2"=]B ,j!$>陀?˗[>Q+ Cs9 _C v<7C`21.f7ϵmf5K+sU2,PԆpr)f8 ; 5f>ζ`-FpQ$wȴu~Њ?iE

已知函数f(x)=log4(4^x+1)-1/2x是偶函数,g(x)=log4(a2^x-4a/3),若f(x)与g(x)的图像只有一个公共点,求a的取值范围抱歉。忘记讲了。答案是{-3},(1,正无穷)
已知函数f(x)=log4(4^x+1)-1/2x是偶函数,g(x)=log4(a2^x-4a/3),若f(x)与g(x)的图像只有一个公共点,求a的取值范围
抱歉。忘记讲了。答案是{-3},(1,正无穷)

已知函数f(x)=log4(4^x+1)-1/2x是偶函数,g(x)=log4(a2^x-4a/3),若f(x)与g(x)的图像只有一个公共点,求a的取值范围抱歉。忘记讲了。答案是{-3},(1,正无穷)
根据题意,有两种情况:
1.在定义域内f(x)=g(x)只有一个解,即f(x)-g(x)=0只有一个解
所以log4(4^x+1)-1/2x-log4(a*2^x-4/3a)=0
得log4[(4^x+1)/(a*2^x-4/3a)]=1/2x
4^(1/2x)=(4^x+1) / (a*2^x-4/3a)
2^x=[2^(2x)+1] / (a*2^x-4/3a)
(a*2^x-4/3a)*2^x=2^(2x)+1
整理得(a-1)* (2^x)^2 -4/3a*(2^x)-1=0有一个解
当a=1时,-4/3*(2^x)-1=0,得到2^x=-3/40,得a3/4
g(x)=log4(a2^x-4a/3),当a>0时,需使2^x>4/3,即t>4/3;a

f(x)=log4(4^x+1)-1/2x=f(x)
解得x=+1或者-1,求出此时f(x)=log4(5)-0.5
当x=1,令g(x)=log4(5)-0.5,a=15/4
当x=-1,同理得a=-3

f(x)=log4(4^x+1)-1/2x不是偶函数

先将f(x)化简:
f(x)=log4(4^x+1)-log4(4^x/2)
=log4(4^x+1)-log4(2^x)
=log4(2^x+2^-x)
然后就好做了吧
2^x+2^-x=a2^x-4a/3
然后可以换元
令t=2^x
当a>0时,t>4/3
当a<0时,0<t<4/3
t+1/t=a...

全部展开

先将f(x)化简:
f(x)=log4(4^x+1)-log4(4^x/2)
=log4(4^x+1)-log4(2^x)
=log4(2^x+2^-x)
然后就好做了吧
2^x+2^-x=a2^x-4a/3
然后可以换元
令t=2^x
当a>0时,t>4/3
当a<0时,0<t<4/3
t+1/t=at-4a/3
(1-a)t^2+4at/3+1=0
t只能有一个值在定义域内
所以首先a=1不成立,此时要注意解得的t值是否在范围内
然后是对a<0,0<a<1,a>1是分别进行讨论
具体过程我不写了,直接给答案
结果就是a>1
额,貌似算漏了一个,当a<0而判别式有等于0时,a=-3,此时t=1/2符合
故最后结果是a=3或a>1

收起

log4(4^x+1)-1/2x= log4(a2^x-4a/3)
(4^x+1)/4^(1/2x)=a*2^x-4a/3
(此时不需要考虑a*2^x-4a/3的正负(4^x+1)/4^(1/2x)=a*2^x-4a/3一定为正)
(4^x+1)/2^x=2^x+1/2^x=a*2^x-4a/3
令t=2^x,
f(x)与g(x)的图像只有一个公共点

全部展开

log4(4^x+1)-1/2x= log4(a2^x-4a/3)
(4^x+1)/4^(1/2x)=a*2^x-4a/3
(此时不需要考虑a*2^x-4a/3的正负(4^x+1)/4^(1/2x)=a*2^x-4a/3一定为正)
(4^x+1)/2^x=2^x+1/2^x=a*2^x-4a/3
令t=2^x,
f(x)与g(x)的图像只有一个公共点
即(4^x+1)/2^x=2^x+1/2^x=a*2^x-4a/3仅有一解,
也就是(1-a)t^2+4a/3*t+1=0仅有一正根。令f(t)= (1-a)t^2-4a/3*t+1
则f(t)=0可能有一正一负根或两相等正根。
一正一负根,x1*x2=1/(1-a)<0(此时不需要△>0, x1*x2=1/(1-a)<0一定能推出△>0),a>1;
两正根:△=0,推出a=-3,a=3/4;a=-3,t=1/2;a=3/4,t=-2;(舍去)
综上,a>1或a=-3;

收起

已知函数f(x)=log4(4^x+1)+kx是偶函数,解不等式f(x)>1 已知函数f(x)=log4(4 ^x+1)+kx(k∈R)是偶函数已知函数f(x)=log4(4 ^x+1)+kx(k∈R)是偶函数.设h(x)=log4(a乘以二的x次方减去三分之四a),若函数f(x)与h(x)已知函数f(x)=log4(4 ^x+1)+kx(k∈R)是偶函数.设h(x)=log4(a乘以 已知函数f(x)=log4(4的x次方+1)+2kx为偶函数…(1)求k值 已知函数f(x)=log4(4的x次方+1)+2kx为偶函数…(1)求k值 已知函数f(x)=log4(4 ^x+1)+kx(k∈R)是偶函数.,求k值. 已知函数f(x)=log4 (2x+3-x^2) (1) 求f(x)的定义域 已知函数f(x)=log4(4^x+1)+kx为偶函数 (1 求k的值 (2 若方程f(x)=l已知函数f(x)=log4(4^x+1)+kx为偶函数(1 求k的值 (2 若方程f(x)=log4(a•2x)有且只有一个实根,求实数a的取值范围 已知函数f(x)=log4(4^x+1)+kx是偶函数求k的值设g(x)=log4(a2^x-4/3a)若函数f( 已知函数f(x)=log4(5/x+3),求方程f^-1(x)=5的解 已知函数f(x)=log4^(x+2),则方程f^(-1)(x)=2的解是 已知函数f(x)=log4(4^x+1)+x/2是偶函数,若方程f(x)-m〈0有解,求m的取值范围 已知函数f(x)=[log4(x)-3]*log4(4x).1,当x∈[1/4,16]时,求该函数的值域.2,令g(x)=f(x)+log4(x^2)-2a*log4x,求g(x)在x∈[4^2,4^4]上的最值. 已知函数f(x)=log4(4^x+1)+kx是偶函数,若方程f(x)-m=0有解,求m的取值范围 已知函数f(x)=2^x-1的反函数为f^-1(x),g(x)=log4(3x+1).(1)若f^-1(x) 已知函数f(x)=log4(4^x +1) g(x)=(k-1)x 记F(x)=f(x) - g(x),且F(x)为偶函数,求常数K讲下方法吧...怎么算呐? 已知f(x)=log4^(2x+3+x^2),求函数的最大值 已知函数f(x)=log4,[(2+x)/(2-x)],其中 (0 已知函数f(x)=log4(ax^2+2x+3).1).若函数f(1)=1,求函数f(x)的单调区间