初中三年数学重点知识总结包括所有的公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:49:04
初中三年数学重点知识总结包括所有的公式
x\{Sǖ*ڪ-Q'٤6NUmU@!غx6l-׀/@Pd5#|;}{zF#R >}sNGߌ|kgFy\8/Ӄ|9UiJsN֬=gg!l-4_س'uÒ(|InC9 {{h;}Fyu{B!{Q۷u;^XQmowE sW~OޖcFNGS_bP,QS9+llLQYۓhܜ댳[qVu0i~1<ި0z!)&'{񿠜ޛ?T1Hnghl#ÏсT|8q` 'c;.Ghg{yѬbe`Ĥw,Tjݾ` Z0c E&)\Wv 'FUS<z֮D $4j5;w&-D V2p28nν#@嬝_Ƣj)hT5U)=W %8g}\o{! ~6,j£T.Sv&%RBԶRN_Ãc XjEfh1E RⴳuҪLc}3נd@Fg<]vᐬE.J/gS=s_hNٙF+kAI oeW.EM jEtSaۮP+ʹ\hcVɠ"|^QYl<׾YޏȍW˽F- (uD:9(9hLܨFa6X{7Qh,mz4n\Ȣ\&/v v]/hO=\A[ g9kI4YBr 8ǀf1A<jJџžJ ao*I=,=7cڭ|"KSQ5s N9 +*j'JHK2%R i3c)JM^>6_mŤln0HCX`R0䲴|MȨcA=5P#~•ڊV-:hTABc{u[\dpt&3ݦԉ GGh"z#-iCV[i:yQGK G8`D ^7:4;RN0"$Iͽc`5r nE )#d@“ؽ~Xh2yL._'!H[h,SbW::|+݃nF!δh96M梡ҭ θ R÷aq{<.fI.hfB 65v6R۹@}B>\%|At!j?Gb3X@Idw=hJ)s `ƣ@>^^no@O["3>C' [];m.s8b1i+{"{li%xXXQt 暴)Jm=viiop}iO- o)sҢOM>TၝgI!ӭ'=yF"i9/{1_5#ypnS˽DDBVQX& S$|A2 ϖ`-zHw$|b!8iߨᡑxl'N49&ĸ={ :um¦gf4O HMCѱL1 cN3g!y>HX榊qew9HȯViLah\uyF@R<؅w{ >ZӋ3kUNL_ 4b8gZ*U{XRX2q<[#椌TESzC02}=H,9K< FUOB30ϘjΊIjNx=ڜA #Bκ@ 6>#KEzu-<MFc=AqZSo k;Uez@rIk.3zs웑ؙyg1}tճZ%d9"l{> @o? 2z˵GXw˧ȟeǟ߱jW2g]Q]rgɜNܾpNDT *{ W sQ%Jk;3n=Kk<1=GL;/-؜6Z;-Oe[[ Vfg9O(gxE/YHR8PxjB"&z(ɸuQxyqFC1DpMxɃhH&S,q]3r*3eDʻxoD[l2!G椁OmtΫs?(ӐՊtIJV ^-o@Inz> Ǡ&ǂ FmLEt:W[K.Yt6 d2IHilH dPqJ(-v*c~Qs,10A­"S+R}*z+JEpR~wZ={er C7~dt y +;1e{%H<xMzyq2X7Tټ  O⣩arMLg9Qt#FmΕaY{7 2Ӻ` aZe.Ihrj|0KE4.#*vv82ޥUL@#ӤIyd/*p&#° ; 9.OAwB]H.ւzI K#U8G=$Y佲؞ %kN\5\j;)KDŽtʹ=2^]c$koMmsG{(ۍ[rԞ'yr3G2(ͽWQRJX.Bbz*8 p*%cM,(UaqH rT=,3[i(Oc1\ TP{NoD%f@K .0\ nW)ŕ,\,&DPrIYrtՁ͒זu(SY;3A#(K\A 3B^Ycg:hWyй,8*+Ss+5Fau<_ʔ,%RҹPqCSYqXڒEnՋ~s޹,-.|I^+23]9! @K0SʝTcEjm\V]}45J0J-4wo\i6߿UaYm6}xH~`Ǿ;@ȌW; )) ߫}KR-~/@+)QҷS!<!S;LF >7J tgf1-4t#eFx&)Œ_(Pg|"7ͱJ`&*`A?K,)~%Gc xG5^t~Z ?+':a qZQϪbh!ko;rt #} {&ĉ<1?=xU{5GE"h"1HZdo&\Zh4tda fۘhD? 08幁SW^u- ҤAWl [<>iAԓp2fU>.מUvᲁ,-SDJ/.(#B,\\LOt8w!@2q e ͚JIMַe5$LF4{r]JzW(܈|y+[܆?Z'} ^s,E4,Bsw]+*V.̈촽~4ny*utx(0MK /1(JUX]'򪚺tqjW+g:k^5Օ`|뜲~h&}h a;T-+*I:+nw^O+&wD^u z^

初中三年数学重点知识总结包括所有的公式
初中三年数学重点知识总结
包括所有的公式

初中三年数学重点知识总结包括所有的公式
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number).
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”).
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction).
整数和分数统称有理数(rational number).
通常用一条直线上的点表示数,这条直线叫数轴(number axis).
数轴三要素:原点、正方向、单位长度.
在直线上任取一个点表示数0,这个点叫做原点(origin).
只有符号不同的两个数叫做互为相反数(opposite number).(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|.
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.两个负数,绝对值大的反而小.
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加.
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数.
有理数减法法则:减去一个数,等于加这个数的相反数.
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.
乘积是1的两个数互为倒数.
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.
两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power).在a的n次方中,a叫做底数(base number),n叫做指数(exponent).
负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何次幂都是0.
把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法.
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit).
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式.
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown). 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution).
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等.
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项.
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid).包围着体的是面(surface).
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短).
连接两点间的线段的长度,叫做这两点的距离.
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角.
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角.
等角(同角)的补角相等.
等角(同角)的余角相等.
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程.
第五章 相交线与平行线
5.1 相交线
对顶角(vertical angles)相等.
过一点有且只有一条直线与已知直线垂直(perpendicular).
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短).
5.2 平行线
经过直线外一点,有且只有一条直线与这条直线平行(parallel).
如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
直线平行的条件:
两条直线被第三条直线所截,如果同位角相等,那么两直线平行.
两条直线被第三条直线所截,如果内错角相等,那么两直线平行.
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行.
5.3 平行线的性质
两条平行线被第三条直线所截,同位角相等.
两条平行线被第三条直线所截,内错角相等.
两条平行线被第三条直线所截,同旁内角互补.
判断一件事情的语句,叫做命题(proposition).
第六章 平面直角坐标系
6.1 平面直角坐标系
含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair).
第七章 三角形
7.1 与三角形有关的线段
三角形(triangle)具有稳定性.
7.2 与三角形有关的角
三角形的内角和等于180度.
三角形的一个外角等于与它不相邻的两个内角的和.
三角形的一个外角大于与它不相邻的任何一个内角
7.3 多边形及其内角和
n边形内角和等于:(n-2)•180度
多边形(polygon)的外角和等于360度.
第八章 二元一次方程组
8.1 二元一次方程组
方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) .
把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns).
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
8.2 消元
将未知数的个数由多化少、逐一解决的想法,叫做消元思想.
第九章 不等式与不等式组
9.1 不等式
用小于号或大于号表示大小关系的式子,叫做不等式(inequality).
使不等式成立的未知数的值叫做不等式的解.
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set).
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown).
不等式的性质:
不等式两边加(或减)同一个数(或式子),不等号的方向不变.
不等式两边乘(或除以)同一个正数,不等号的方向不变.
不等式两边乘(或除以)同一个负数,不等号的方向改变.
三角形中任意两边之差小于第三边.
三角形中任意两边之和大于第三边.
9.3 一元一次不等式组
把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown).
第十章 实数
10.1 平方根
如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数.
a的算术平方根读作“根号a”,a叫做被开方数(radicand).
0的算术平方根是0.
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) .
求一个数a的平方根的运算,叫做开平方(extraction of square root).
10.2 立方根
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root).
求一个数的立方根的运算,叫做开立方(extraction of cube root).
10.3 实数
无限不循环小数又叫做无理数(irrational number).
有理数和无理数统称实数(real number).
第十一章 一次函数
我们称数值变化的量为变量(variable).
有些量的数值是始终不变的,我们称它们为常量(constant).
在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independent variable),y是x的函数(function).
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.
形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数.
形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function).正比例函数是一种特殊的一次函数.
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“形”的角度看,解方程组相当于确定两条直线交点的坐标.
第十二章 数据的描述
我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率.
常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram).
条形图:描述各组数据的个数.
复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较.
扇形图:描述各组频数的大小在总数中所占的百分比.
折线图:描述数据的变化趋势.
直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别.
在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距.
求出各个小组两个端点的平均数,这些平均数称为组中值.
第十三章 全等三角形
能够完全重合的两个图形叫做全等形(congruent figures).
能够完全重合的两个三角形叫做全等三角形(congruent triangles).
全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等.
全等三角形全等的条件:三边对应相等的两个三角形全等.(SSS)
两边和它们的夹角对应相等的两个三角形全等.(SAS)
两角和它们的夹边对应相等的两个三角形全等.(ASA)
两个角和其中一个角的对边对应相等的两个三角形全等.(AAS)
角平分线的性质:角平分线上的点到角的两边的距离相等.
到角两边的距离相等的点在角的平分线上.
第十四章 轴对称
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector).
轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线.
线段垂直平分线上的点与这条线段两个端点的距离相等.
由一个平面图形得到它的轴对称图形叫做轴对称变换.
等腰三角形的性质:
等腰三角形的两个底角相等.(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(三线合一)(附:顶角+2底角=180°)
如果一个三角形有两个角相等,那么这两个角所对的边也相等.(等角对等边)
有一个角是60°的等腰三角形是等边三角形.
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
第十五章 整式
式子是数或字母的积的式子叫做单项式(monomial).单独的一个数或字母也是单项式.
单项式中的数字因数叫做这个单项式的系数(coefficient).
一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree).
几个单项式的和叫做多项式(polynomial).每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constant term).
多项式里次数最高的项的次数,就是这个多项式的次数.
单项式和多项式统称整式(integral expression).
所含字母相同,并且相同字母的指数也相同的项叫做同类项.
把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项.
几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项.
同底数幂相乘,底数不变,指数相加.
幂的乘方,底数不变,指数相乘
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
(x+p)(x+q)=x^2+(p+q)x+pq
平方差公式:(a+b)(a-b)=a^2-b^2
完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
(a+b+c)^2=a^2+2a(b+c)+(b+c)^2
同底数幂相除,底数不变,指数相减.
任何不等于0的数的0次幂都等于1.
第十六章 分式
如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction).
分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变.
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母.
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
分式乘方要把分子、分母分别乘方.
a^-n=1/a^n (a≠0) 这就是说,a^-n (a≠0)是a^n的倒数.
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.
第十七章 反比例函数
形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function).
反比例函数的图像属于双曲线(hyperbola).
当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.
第十八章 勾股定理
勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2
勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形.
经过证明被确认正确的命题叫做定理(theorem).
我们把题设、结论正好相反的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.(例:勾股定理与勾股定理逆定理)
第十九章 四边形
有两组对边分别平行的四边形叫做平行四边形.
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.平行四边形的对角线互相平分.
平行四边形的判定:
1.两组对边分别相等的四边形是平行四边形;
2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.一组对边平行且相等的四边形是平行四边形.
三角形的中位线平行于三角形的第三边,且等于第三边的一半.
直角三角形斜边上的中线等于斜边的一半.
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等.
矩形判定定理:
1.有一个角是直角的平行四边形叫做矩形.
2.对角线相等的平行四边形是矩形.
3.有三个角是直角的四边形是矩形.
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
菱形的判定定理:
1.一组邻边相等的平行四边形是菱形(rhombus).
2.对角线互相垂直的平行四边形是菱形.
3.四条边相等的四边形是菱形.
S菱形=1/2×ab(a、b为两条对角线)
正方形的性质:四条边都相等,四个角都是直角.
正方形既是矩形,又是菱形.
正方形判定定理:
1.邻边相等的矩形是正方形.
2.有一个角是直角的菱形是正方形.
一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium).
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等.
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形.
线段的重心就是线段的中点.
平行四边形的重心是它的两条对角线的交点.
三角形的三条中线交于疑点,这一点就是三角形的重心.
宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形.
第二十章 数据的分析
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
一组数据中出现次数最多的数据就是这组数据的众数(mode).
一组数据中的最大数据与最小数据的差叫做这组数据的极差(range).
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定.
数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流