已知椭圆的中心在原点,焦点在坐标轴上,直线Y=X+1与该椭圆相交于P和Q,且OP⊥OQ,PQ=根号10/2,求椭圆的方程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 16:29:04
已知椭圆的中心在原点,焦点在坐标轴上,直线Y=X+1与该椭圆相交于P和Q,且OP⊥OQ,PQ=根号10/2,求椭圆的方程.
xSN@4 3 _ فPe<@+#TUD"lB1P~J4cg_=Pl:+y3=9Oz򨑶DԓO+'FM.WM:_"vm?-E^[|;񙈛Um|u}>_s5trO!&7A?LWѻтrfx[E|bSAbޏޮT~6_lj8!sl0f9]؟A ϜH!:'vǜPQ[}aXsHIFX˥ %*6>Ҋ+:r(iI~{6WH[AyB43xxy 4yz~6\r3 | %5a,G-ÄJx@ :" hUTVC~

已知椭圆的中心在原点,焦点在坐标轴上,直线Y=X+1与该椭圆相交于P和Q,且OP⊥OQ,PQ=根号10/2,求椭圆的方程.
已知椭圆的中心在原点,焦点在坐标轴上,直线Y=X+1与该椭圆相交于P和Q,且OP⊥OQ,PQ=根号10/2,求椭圆的方程.

已知椭圆的中心在原点,焦点在坐标轴上,直线Y=X+1与该椭圆相交于P和Q,且OP⊥OQ,PQ=根号10/2,求椭圆的方程.
设椭圆为mx²+ny²=1
将直线方程代入椭圆消去y
mx²+n(x+1)²=1
(m+n)x²+2nx+n-1=0
则x=[-n±√(n+m-mn)]/(m+n)
|x1-x2|=2√(n+m-mn)/(m+n)
则x1x2=(n-1)/(m+n)
将直线方程代入椭圆消去x
则m(y-1)²+ny²=1
则y1y2=(m-1)/(m+n)
因OP⊥OQ,
则y1y2/x1x2=-1
则(m-1)/(n-1)=-1
则m+n=2
PQ²=(x1-x2)²+(y1-y2)²=(x1-x2)²(1+k²)=2(x1-x2)²=5/2
又因|x1-x2|=2√(n+m-mn)/(m+n)=√(2-mn)
则2-mn=25/16
mn=7/16
解方程x²-2x+7/16=0
则m=7/4,n=1/4,或m=1/4,n=7/4
椭圆方程为:x²/4+y²/(4/7)=1
或y²/4+x²/(4/7)=1

不会

已知中心在原点,焦点在坐标轴上的椭圆经过P(-3,0) Q(0,-2),求椭圆的标准方程,求椭圆的离心率 已知椭圆的中心在原点且过点P(3 ,2),焦点在坐标轴上,长轴长是短轴长的3倍,求该椭圆的方程 已知椭圆的中心在原点,焦点在坐标轴上,且过P1(根号6,1)和P2(-根号3,-根号2) 求椭圆方程 已知中心在原点,焦点在坐标轴上的椭圆经过点M(1,42 3 ),N(-32 2 ,2 ) ,求椭圆的离心率已知中心在原点,焦点在坐标轴上的椭圆经过点M(1,42 3 ),N(-32 2 ,2 ) ,(1)求椭圆的离心率 ;(2)在椭圆上是否存 已知椭圆C的中心为坐标原点,焦点在坐标轴上,且经过点M(4.1).N(2.2).求椭圆C的方程. 中心在原点,焦点在坐标轴上,且过两点(4,3)(6,2)的椭圆的方程为 已知椭圆的中心在原点,对称轴在坐标轴上,两个焦点为F1(-1,0) F2...已知椭圆的中心在原点,对称轴在坐标轴上,两个焦点为F1(-1,0) F2(1,0)离心率e=√2/2 (1)求椭圆方程 已知椭圆中心在原点,焦点在坐标轴上,且过点P(√6,1)P(-√3,-√2),求此椭圆方程 已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为1/3 1、求椭圆的标准方程 2、过椭圆左顶点作直已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为1/31、求椭圆的标准方程2、过 已知椭圆的中心在原点,焦点在坐标轴上,它的长轴长为短轴长的3倍,且此椭圆经过点A(3,1),求椭圆方程 已知椭圆的中心在原点O 焦点在坐标轴上 直线y=x+1与该椭圆相交与P和Q且OP⊥OQ 绝对值PQ=2分之根号10 求椭圆的方程 已知椭圆的中心在原点O 焦点在坐标轴上 直线y=x+1与该椭圆相交与P和Q且OP⊥OQ 绝对值PQ=2分之根号10 求椭圆的方程 已知椭圆的中心在原点,焦点在坐标轴上,直线Y=X+1与该椭圆相交于P和Q,且OP⊥OQ,PQ=根号10/2,求椭圆的方程. 已知椭圆中心在原点,焦点在坐标轴上,直线 y = x + 1 与椭圆交于 P 和 Q 两点,且 OP ⊥ OQ ,PQ = 10 ,求椭圆的方程. 解析几何圆锥曲线已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=(根10)/2,求椭圆方程. 已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆交于P,Q两点,且OP⊥OQ,/PQ/=根号10/2,求这个椭圆方程. 已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆相交于点P和Q,且OP⊥OQ,|PQ|=√10/2,求椭圆方程 1.已知中心在原点,焦点在x轴上的椭圆,离心率e=√2/2(注:“√”为根号.),且经过抛物线x^2=4y的焦点,求椭圆的标准方程.2.已知双曲线的中心在原点,左、右焦点F1和F2在坐标轴上,离心率为√2 ,且