已知tanx=2010,则[1-sin(9π/2-2x)]/sin(9π-2x)=答案是2010.,但我算出来是1/2010

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:51:46
已知tanx=2010,则[1-sin(9π/2-2x)]/sin(9π-2x)=答案是2010.,但我算出来是1/2010
x){}KK*l tv̌6-Ӱ<ߠokT8Nyٌ z:O=|] 7$n8X6}0M/jdT7Y*JJ$ѥ@<}~׊ >sVxt턧=Ӟkxo=Pǽ~O`@00ڞ*[. Xe M7

已知tanx=2010,则[1-sin(9π/2-2x)]/sin(9π-2x)=答案是2010.,但我算出来是1/2010
已知tanx=2010,则[1-sin(9π/2-2x)]/sin(9π-2x)=
答案是2010.,但我算出来是1/2010

已知tanx=2010,则[1-sin(9π/2-2x)]/sin(9π-2x)=答案是2010.,但我算出来是1/2010
原式=(1-cos2x)/sin2x
=[1-(1-2sin²x)]/2sinxcosx
=2sin²x/2sinxcosx
=sinx/cosx
=tanx
=2010

是2010 分子化简得(1-cos2x),即2sinx*sinx,分母得sin2x,即2sinx*cosx,约分得tanx=2010