C(0,0)+1/2C(1,n)+1/3C(2,n)+…1/kC(k-1,n)…+1/(n+1)C(n,n)=1/(n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 13:27:33
C(0,0)+1/2C(1,n)+1/3C(2,n)+…1/kC(k-1,n)…+1/(n+1)C(n,n)=1/(n+1)
xPAO0+VDod !z7`h4b2,Aw&A ~m`84^YC@&ED:hh&e%2Oz1-g:"l*6,SXOB2dsi s-Y˃{,O!^ϖuXM ͲJ>ObH8D1

C(0,0)+1/2C(1,n)+1/3C(2,n)+…1/kC(k-1,n)…+1/(n+1)C(n,n)=1/(n+1)
C(0,0)+1/2C(1,n)+1/3C(2,n)+…1/kC(k-1,n)…+1/(n+1)C(n,n)=1/(n+1)

C(0,0)+1/2C(1,n)+1/3C(2,n)+…1/kC(k-1,n)…+1/(n+1)C(n,n)=1/(n+1)
证明:1/iC(i-1,n)=1/i*n!/(i-1)!*(n+1-i)!)=n!/(i!*(n-1+i)!)
=1/(n+1)(n+1)!/(i!*(n+1-i)!)=1/(n+1)C(i,n+1)
C(0,0)+1/2C(1,n)+1/3C(2,n)+…1/kC(k-1,n)…+1/(n+1)C(n,n)
=1/(n+1)(C(0,n+1)+C(1,n+1).+C(n,n+1))
=(2^(n+1)-1)/(n+1)
题目出错了,具体做法请见上面,
祝好~

证明:【1/i】C(i-1,n)=1/i*n!/(i-1)!*(n+1-i)!)=n!/(i!*(n+1-i)!)
=【1/(n+1)】(n+1)!/(i!*(n+1-i)!)=1/(n+1)C(i,n+1)
C(0,0)+1/2C(1,n)+1/3C(2,n)+…1/kC(k-1,n)…+1/(n+1)C(n,n)
=1/(n+1)(C(0,n+1)+C(1,n+1)....+C(n,n+1))
=(2^(n+1)-1)/(n+1)
稍有改动——应该更清楚了。

证明:c(n,0)c(n,1)+c(n,1)c(n,2)+...c(n,n-1)c(n,n)=c(2n,n-1) C(0,n)+2C(1,n)+3C(2,n)+...+(r+1)C(r,n)+...+(n+1)C(n,n)=___(n属于N*) C(n.0)+2C(n.1)+4C(n.2)+C(n.2)+C(n.3)…+C(n.n)=? C(n,0)+C(n,1)+C(n,2)+…+C(n,n-2)+C(n,n-1)+C(n,n)为什么等于什么 已知C(n,0) +2C(n,1) +2^2C(n,2) +2^3C(n,3)+……+2^nC(n,n)=729,则C(n,1)+C(n,2) +……C(n,n)=多少 组合:C(n,0)+C(n,1)+……+C(n,n)=n^2 急1)C(n,0)+2C(n,1)+3C(n,2)+4C(n,3) +...+(n+1)C(n,n)=(n+2)*2^(n-1)2) C(n,0)+3C(n,1)+5C(n,2)+...+(2n+1)C(n,n)=(n+1)*2^n 证明C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n) 求证:C(0,n)+2C(1,n)+.+(n+1)C(n,n)=2^n+2^(n-1) 如何证明C(0,n)+C(1,n)+C(2,n)+.+C(n-1,n)+C(n,n)=2的N次方 不用数学归纳法 组合恒等式的证明:C(r,r)+C(r+1,r)+C(r+2,r)+…+C(n,r)=C(n+1,r+1) C(n,1)+2C(n,2)+…+nC(n,n)=n2^(n-1)还有:C(m,r)*C(n,0)+C(m,r-1)*C(n,1)+…+C(m,0)*C(n,r)=C(m+n,r) (C(n,o))^2+(C(n,1))^2+(C(n,2))^2+(C(n,3))^2+…+(C(n,n))^2=C(2n,n) 猜想组合公式C(0,n)+C(1,n)+C(2,n)+...C(n.n)并证明 【急】三个组合恒等式求证明C(r,r)+C(r,r+1)+C(r,r+2)+,+C(r,n)=C(r+1,n+1)C(r,m)*C(0,n)+C(r-1.m)*C(1,n)+.+C(0.m)*C(r,n)=C(r,m+n)[C(0,n)]^2+[C(1,n)]^2+.=C(n,2n) 如何证明C(0,n)+C(2,n)+C(4,n)+...+C(n,n)=2的(n-1)次方 还有C(1,64)+C(3,64)+...+C(63,64)=? C(11,1)+C(11,3)+.+C(11,11)=?证明:C(n,0)+C(n,2)+C(n,4)+.+C(n,n)=2(n-1) 本人高中生,没什么分, 求证明这个等式C(n,0)/1 - C(n,1)/3 + C(n,2)/5 - ...+(-1)^n *C(n,n)/(2n+1) = [2*4*6*...*(2n)]/[3*5*7*...*(2n+1)] 证明C(0,n)+C(1,n+1)+C(2,n+2)+...+C(k,n+k)=C(k,n+k+1) 组合数公式的题c(n,1)+2c(n,2)+...+nc(n,n) = n[c(n-1,0)+c(n-1,1)+...+c(n-1,n-1)]=n2^n-1