光合作用产生有机物最终以什么形式运到其他组织是蔗糖嘛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:48:00
光合作用产生有机物最终以什么形式运到其他组织是蔗糖嘛
光合作用产生有机物最终以什么形式运到其他组织
是蔗糖嘛
光合作用产生有机物最终以什么形式运到其他组织是蔗糖嘛
不一定的,这是详细的过程,最后有说,产生的是(CH2O),表示糖类
光合作用可分为光反应和碳反应(旧称暗反应)两个阶段
1 光反应
条件:光照、光合色素、光反应酶.
场所:叶绿体的类囊体薄膜.(色素)
光合作用的发现: 水(原料)+二氧化碳 (原料) 光(条件)&叶绿体(场所)=氧气(产物)+有机物(产物)
过程:①水的光2H2O→4[H]+O2(在光和叶绿体中的色素的催化下).②ATP的合成:ADP+Pi+能量→ATP(在光、酶和叶绿体中的色素的催化下). 影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度、矿质元素等.
意义:①光解水,产生氧气.②将光能转变成化学能,产生ATP,为碳反应提供能量.③利用水光解的产物氢离子,合成NADPH(还原型辅酶Ⅱ),为碳反应提供还原剂NADPH(还原型辅酶Ⅱ),NADPH(还原型辅酶Ⅱ)同样可以为碳反应提供能量.
详细过程如下: 系统由多种色素组成,如叶绿素a(Chlorophyll a)、叶绿素b(Chlorophyll b)、类胡萝卜素(Carotenoids)等组成.既拓宽了光合作用的作用光谱,其他的色素也能吸收过度的强光而产生所谓的光保护作用(Photoprotection).在此系统里,当光子打到系统里的色素分子时,会如图片所示一般,电子会在分子之间移转,直到反应中心为止.反应中心有两种,光系统一吸收光谱于700nm达到高峰,系统二则是680nm为高峰.反应中心是由叶绿素a及特定蛋白质所组成(这边的叶绿素a是因为位置而非结构特殊),蛋白质的种类决定了反应中心吸收之波长.反应中心吸收了特定波长的光线后,叶绿素a激发出了一个电子,而旁边的酵素使水裂解成氢离子和氧原子,多余的电子去补叶绿素a分子上的缺.然后叶绿素a透过如图所示的过程,生产ATP与NADPH(还原型辅酶)分子,过程称之为电子传递链(Electron Transport Chain).
2 碳反应
碳反应的实质是一系列的酶促反应.原称暗反应,后随着研究的深入,科学家发现这一概念并不准确.因为所谓的暗反应在暗中只能进行极短的时间,而在有光的条件下能连续不断进行,并受到光的调节.所以在20世纪90年代的一次光合作用会议上,从事植物生理学研究的科学家一致同意,将暗反应改称为碳反应.
条件:碳反应酶.
场所:叶绿体基质.
影响因素:温度、CO2浓度、酸碱度等.
过程:不同的植物,碳反应的过程不一样,而且叶片的解剖结构也不相同.这是植物对环境的适应的结果.碳反应可分为C3、C4和CAM三种类型.三种类型是因二氧化碳的固定这一过程的不同而划分的.对于最常见的C3的反应类型,植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体.叶绿体中含有C5.起到将CO2固定成为C3的作用.C3再与NADPH在ATP供能的条件下反应,生成糖类(CH2O)并还原出C5.被还原出的C5继续参与暗反应.
光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化).
CO2+H2O( 光照、酶、 叶绿体)==(CH2O)+O2 (CH2O)表示糖类
这个我觉得应该没有一个确定的答案,不同的植物应该会有所不同,主要还是多糖。
是以含碳化合物的行式