在等差数列中,试证明Sm=p,Sp=m,Sm+P=_(m+p)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:26:50
在等差数列中,试证明Sm=p,Sp=m,Sm+P=_(m+p)
xN0_%XtyV@ABt;K)Tӄn}.u"K|Xϟi_b^f|fco0#-9m/ O:TJDT_n<^#/!F2(2^PƒI!DGA~ {gfp%In+m%Za :4]ӭm?f-28@^bb>NF_io'

在等差数列中,试证明Sm=p,Sp=m,Sm+P=_(m+p)
在等差数列中,试证明Sm=p,Sp=m,Sm+P=_(m+p)

在等差数列中,试证明Sm=p,Sp=m,Sm+P=_(m+p)
a(n) = a + (n-1)d.
s(n) = na + n(n-1)d/2.
p = s(m) = ma + m(m-1)d/2.p^2 = mpa + mp(m-1)d/2.
m = s(p) = pa + p(p-1)d/2.m^2 = mpa + mp(p-1)d/2.
p^2 - m^2 = [mpa + mp(m-1)d/2] - [mpa + mp(p-1)d/2] = mpd/2(m-p) = (p-m)(p+m).
m不等于p时,
mpd/2 = -(p+m).
d/2 = -(p+m)/(mp).
p = ma + m(m-1)d/2 = ma - m(m-1)(p+m)/(mp) = ma - (m-1)(p+m)/p.
a = [p + (m-1)(p+m)/p]/m.
s(m+p)= (m+p)a + (m+p)(m+p-1)d/2
= (m+p)[p+(m-1)(p+m)/p]/m + (m+p)(m+p-1)[-(p+m)/(mp)]
= [(m+p)/(mp)][p^2 + (m-1)(p+m) - (m+p-1)(m+p)]
= [(m+p)/(mp)][p^2 + (p+m)(-p)]
= [(m+p)/(mp)](-mp)
= -(m+p)

在等差数列中,试证明Sm=p,Sp=m,Sm+P=_(m+p) 在等差数列{a}中前n项和为Sn,若Sm=p,Sp=m则Sm+p=-(m+P)如何证明 证明在等差数列中,1.(Sp-Sq)/(p-q)=(Sp+Sq)/(p+q) 2.若Sm=Sn,则S(m+n)=0 在等差数列{a}中前n项和为Sn,若Sm=Sp(m不等于p)则Sm+n=0如何证明 等差数列中如何理解或证明Sm=p,Sp=m(m≠p),则Sm+p=-(m+p) 数列证明题①等差数列{an},Sm=p,Sp=m(m≠p),求证Sm+p=-(m+p)②Sm=Sp(m≠p),Sm+p=0拜托了各位 在一个等差数列中,若M+N=P+Q,如何证出 Sm+Sn=Sp+Sq.如题! Sm=Sp (m不等于p) Sm+p= 数列的性质2)若m+n=p+q 则 an+am=ap+aq (3)2 am =a1+a2m-1 (4)Sm ,S2m -Sm ,S3m -S2m 成等差数列 Sm+n=Sm+q^mSn 这些性质怎么证明的.在等差数列(An)中,若Sm=n,Sn=m(Sn为前n项和),且m不等 等差数列{an}中,若Sm=Sp.求证Sm+p=0 等差数列{an},其中Sm=p ,Sp=m(m≠n),那么Sm+p=_____(注意m+p为S的下标) 本人需要详细的证明过程 设Sn是等差数列{an}的前n项和,求证:若正整数m,n,p成等差数列,则Sm/m,Sn/n,Sp/p也成等差数列. 在等差数列中Sm=p,Sn=q,证明Sm+n=mq-np/n-mSm+n=正确答案是什么 在一个等差数列中,Sn=m,Sm=n,m>n,则Sm+n=? 等差数列AN中,前N项和SN,且满足SM=SP(M不等于P)求SN中哪一项最大如S3=S9……3Q 在等差数列中,Sm,S2m-Sm,S3m-S2m成等差数列 在等差数列{an}中,若Sm=Sn(m≠n) 求证Sm+n=0 在一个等差数列中,若am+an=ap+aq,如何证明Sm+Sn=Sp+Sq.或者告诉一下这个结论是否成立?抄袭的就不要回答了