多元函数的极限的问题呢多元函数极限的定义:设二元函数f(p)=f(x,y)的定义域D,p0(x0,y0)是D的聚点 如果存在函数A 对于任意给定的正数ε  总存在正数δ  使得当点p(x,y)∈D∩∪(p0,δ)时

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 05:43:46
多元函数的极限的问题呢多元函数极限的定义:设二元函数f(p)=f(x,y)的定义域D,p0(x0,y0)是D的聚点 如果存在函数A 对于任意给定的正数ε  总存在正数δ  使得当点p(x,y)∈D∩∪(p0,δ)时
xTNQ5Na&&~@~A`bҚI}qP6P^@-**8.Gг< gpDۤm2ɜ˾',C;Cwնi}+pT:O -tjM53"NA-(YVhJHxo<͎Fp}qPXE*0vj7z,yXۄ XCJ,gV5sfV}ԩY헩^Fcl<2V0h^DYf4CkzX"[tG S)3uy\FF}9 Б*.i$[#,')BE{w. X;H<#ZOe vCeKfR4WP݀lO".φ=SqSbȞl ]ՌQ˱T!f&51kӒgJYZuweY%˨tWaUr@s6S!TY?>o##HnqO,Z SF^$fs,4/ycD(+6Oo4nx8ci_q =0Z|R8f". -r*;*#ƓM2{~

多元函数的极限的问题呢多元函数极限的定义:设二元函数f(p)=f(x,y)的定义域D,p0(x0,y0)是D的聚点 如果存在函数A 对于任意给定的正数ε  总存在正数δ  使得当点p(x,y)∈D∩∪(p0,δ)时
多元函数的极限的问题呢
多元函数极限的定义:设二元函数f(p)=f(x,y)的定义域D,p0(x0,y0)是D的聚点 如果存在函数A 对于任意给定的正数ε  总存在正数δ  使得当点p(x,y)∈D∩∪(p0,δ)时,都有Ⅰf(p)-AⅠ=Ⅰf(x,y)-AⅠ﹤ε成立 那么就称常数A为函数f(x,y)当(x,y)‐(x0,y0)时的极限 其实我很疑惑呢 就是聚点的定义包括边界点 但是边界点好像不存在极值吧 因为如果界线外趋近于p0点极限不存在呢 那么为什么极限的定义里有边界点的极限呢

多元函数的极限的问题呢多元函数极限的定义:设二元函数f(p)=f(x,y)的定义域D,p0(x0,y0)是D的聚点 如果存在函数A 对于任意给定的正数ε  总存在正数δ  使得当点p(x,y)∈D∩∪(p0,δ)时
我们讨论函数的极限,是在函数的定义域中讨论,对于定义域边界上的的点,讨论函数在该点的极限也是考察它在定义域中的一个邻域中的情况,与边界外的点无关.所以,对边界上的点也是可以存在极限的.例如,对一元函数y=√sinx/√x,0是定义域(0,+∞)的端点,x趋于+0时,limy=1极限存在.
PS,对一元函数在区间端点处讨论极限,我们可以讨论其左或右极限,但对于多元函数没有了左右极限的概念,对于边界点的极限和内点的极限一样讨论,只是在讨论时我们只关注该点的某个邻域在定义区域内的那部分,这也是我们必须引入聚点概念的一个原因.边界点若不是聚点则函数在这点就没有极限了.