求著名的悖论著名的悖论有什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:29:16
求著名的悖论著名的悖论有什么
xYn*~HTbDh'I4(y1`FmY Sb)A$@4°$ ˗NLO-;>xe!F[4#PyX;{7ino)dqPp3N꡽oKHZWt\RE.(N{nT(Ӈ#DhJ)_ nzTe$֣#| ǵy;8@V.(f-?%vKt~-URQ6~-=/ LDf"vɦKdpL UoKgNX`KvCB#O8ߣPvÖB5R^S/ OYX8#@!_, .f[oTa@becxa@ =é\=}>'dHŲ7?<$>/k}lysehuD5]B9KDD,v3Zm:M9CVDf;eBopy?St M&: sW(}Tl7}&AHh cf8|nkzT"J.~[ʠ7(HBek[n աޓk#(\g(l3r@(.V(DԖ7mPML _s' h>l9:􉟲a- uM kbkbW[_~bT/e z4Лm36<{(qjLҹ~.A߽G, OϲhFr}(m ZCo`3,6S vYihw+cX_I@%24E/:{*Y'ېƿ5~!Y!牷A=1DYp˔c W\z#&ɞFL?HYӰS8V]KfP Lf%/l %(Wleڤh)q ~{nE1%䃽F}U,wQ1MFR0} Ԅ--++ mob(=rc-W7cm=٭)"6 -h~+M 4YbbJ &V^I8㽭Z O[(Mz\a׶M̷6ܤ|F{314ţ5Bp9% a;*{RF(hBoMIƊ۾`L dkYy_Os\b΃nAy84G: ΌZЛ/3iZ{5,`HUj(A3(Hm#ɪՆu@x?A:c3&˪ewzPZrXឌN(tDTd* T k7iEFJЬj׃C@Ķ ^;^ST@M'6坓x@Iʎ`UA׌"ʌK['ow1B ='+԰Ilڿ_#AZy3ħ6N/pHc)`tu l26HP,@}T rChB(f U5%nl]G-M՚+1@H 'Cib FEO:9X1 ^?>$ 1'yA>a)OjhW y^0B[7! He>he5k_aΎ5:3c* 8XzM\SB^|  d8=T?YK b\d;fD\̤$% ,꽺Ԓ7}"x&#/a2Z"sH]qlXZ"i|Nuځ52MDۅ40,BDm\kZ2a3x4a\RSKMduq{Y5o:LO4v+=ɾy4k'#PX~Rx<ukV g|![-zj'Z-ھfa)Zh 01hȇް  0ZbQ}0zG-\ G dF3yr;dy 7%h">yio#Tt럙#K;i b uV%ڝ襙+ MC@:C$z5OE58,4si g5'쪁^4عԾ/&zKr2et^NmІ1Vb8|K50^3'FJdvKy%+E6>47QGh&Qp)qFd!E"M#j̶#ea6DpD2ao8b)s#݈%DAHVkR,RV͆Eag{.J|??_? E c

求著名的悖论著名的悖论有什么
求著名的悖论
著名的悖论有什么

求著名的悖论著名的悖论有什么
芝诺悖论:
阿基里斯是古希腊神话里跑的最快的人,但如果他前面有一只乌龟(正从A点向前爬),他永远也追不上这只乌龟.理由如下:他要追上乌龟必须要经过乌龟出发的地方A,但当他追到这个地方的时候,乌龟又向前爬了一段距离,到了B点,他要追上乌龟又必须经过B点,但当他追到B点的时候,乌龟又爬到了C点.所以阿基里斯永远也追不上乌龟!
亚基里斯和乌龟
一日亚基里斯和乌龟来一次赛跑,因为亚基里斯认为自己比乌龟快,所以他让乌龟少跑一段距离.他们的协议是亚基里斯会在某地点d 1开始起跑,而乌龟则会以较接近终点的地方d 2为起点.但试想想,当亚基里斯跑到d 2的时候,乌龟会跑到了另一地方d 3.亚基里斯追到d 3的时候,乌龟却已到了d 4.如此类推,每次亚基里斯跑到乌龟之前到过的地方,乌龟却已再向前跑了一段距离.这样看来,亚基里斯怎能追到乌龟呢?
沙丘悖论
沙粒堆在一起,聚少成多,堆成沙丘.例如十万粒沙堆在一起就成了沙丘.沙丘这样大,若随便拿走一粒沙,沙丘仍会存在,因为一粒沙实在微不足道.同样,从九万九千九百九十九粒沙组成的沙丘再拿走一粒沙,沙丘也不会因此消失.总而言之,从一个沙丘拿走一粒沙,沙丘会继续存在.但若真的如此,连续把沙粒一粒一粒拿走,直至剩下最后一粒沙,沙丘也继续存在.但一粒沙怎可以构成一个沙丘呢?
不自称的悖论
如果一个谓词不能应用于它自己身上,我们称之为「不自称」的.反之,我们则称为「自称」.例如,「由中文字所组成的」这个谓词便正是由中文字所组成,所以是个自称的谓词.「是个红色的水果」只可以形容水果,不可以形容自己,所以不自称.
那么「是不自称的」本身是不是不自称的?如果是,它不应用于自己身上,即是说它应用于自己身上.但如果不是,它应用于自己身上,亦即是说它不应用于自己身上.换言之,如果它应用于自己身上,它就不应用于自己身上了!
律师和徒弟
学生甲是某大律师的徒弟.当他还在受训的时候,他答应老师,说会在他完成训练、打胜了第一场官司后缴交学费.但毕业后学生甲却一直不接手任何官司,于是老师便决定控告他拖欠学费.
老师的论据是,如果老师自己打胜了这场官司,学生甲必要立即缴交学费;如果是学生甲打胜,甲便应该按照原本的协议缴交学费.所以无论如何学生都应交学费.
但甲的论据是,如果法庭判他胜利,他便不需缴交学费;如果是老师胜利,他自己便从来没有打胜过,所以根据协议他也不需缴交学费.
到底谁的论据有道理?
说谎的人
有人这样说:「我现在所讲这句话是假的.」
那么,这个人所讲的到底是真或是假的呢?若他所说的是真,则他便是在讲假话,亦即他所说的是假的了.但若他所说的是假,那么他说自己在讲假话,岂非正确?但一句说话又怎可能是既真又假的呢?也许有些人会认为他那句话既不真也不假,但如果他所讲的其实是不真不假,而他却说自己在讲假话,那么他不真的是在讲假话吗?
纽康姆悖论
试想想,在你面前有两个盒子,一个是透明的,有一万元在里头,另一个是不透光的,可能有一百万元在里头,也可能没有任何金钱.你有两个选择:你可以拿走不透明的盒子,又或两个盒子都拿走,而你拿的盒子里的所有钞票都是你的.
不过,有一个非常准确(接近100%准确)的预言家会在场预测你的选择.在你作出决定之前,他会先预测你的选择.如果他算出你会只拿走不透明盒子,他便会放一百万元进这个盒子.若他认为你会拿走两个盒子的话,他便会给你一个空的不透明盒子.
现在,他已作出了他的预测,安排了适当的盒子.从你的角度来看,不透明的盒子内有没有钞票,已成定局.拿走两个盒子,照道理会比拿一个得到多一万元.但绝大部份决定拿走两个盒子的人,却只得一万元,而非一百零一万元.你认为应如何理性地选择?
囚犯的两难
假设你和我犯了法,一起被收在监里,根据我们的律师:
如果我们一个人认罪一个人不认罪,认罪的那个便会获得释放,不认罪的就会被判监十年.
如果我们都认罪,每人都会囚七年.
如果我们都不认罪,就只会被判一年监.
假设我们两人都十分精明,亦觉得徒刑越短越好.现在,我和你被分开,无法沟通,各自要决定是否认罪.
我不知道你是否会认罪.不过若你认罪,我也应该认罪,因为这样便只会判监七年而非十年.如果你不认罪,我更应认罪,因为这样我便会获得释放.所以无论如何我都应该认罪.
但若你也这样推论,最后决定认罪,我们便要被判囚七年了.这比起两人都不认罪,判一年监,实在差得多了.何以理性的推论,引至这样的后果呢?
罗素悖论
我们惯常将东西、人物分入不同集合.例如2、16等便是双数集合的一份子.但大多数的集合本身并不是该集合的份子.双数集合内含2、16等数目,但集合本身并非一个双数,所以它不是自己的份子,正如几个国家所组成的联盟本身并不是一个国家一样.但「不是动物」所指的集合却是自己的一份子,因为集合包含铅笔、树等东西,那它自己自然不是动物.
好了,那么「不是自己份子」所指的集合,是否自己的份子?
突如其来的测验
突击测验究竟是否可能?有一个老师告诉她的学生,下星期会有突击测验.她
的学生推断,测验的日期必不会是在星期五,因为如果到星期四测验还没有举行的话,那么所有学生都会知道测验会在星期五发生,所以这个测验也不能算是突击测验了.既然剔除了测验在星期五举行的可能性,以同样的理由,突击测验也不可能在星期四发生.如此类推,突击测验根本不可能.但到了下星期一,老师却真的来一个突击测验,所有学生都很惊讶,他们的推论那里出了问题?
剪自己的头发理发师
在某一个村庄有一个理发师,他只会替不会给自己剪发的人剪发.那么你说,他会不会剪自己的头发?
世上没有全能的上帝
照道理,「全能」是指有能力做到任何可能做到的事情.那么,一个全能的上帝能否造出一块?自己不能举起的石头?如果可以,那便有一件事是上帝做不到的了,就是举起?自己创造的那块石头.如果上帝造不到这样的一块石头,那上帝也不是全能的了,因为造一块自己举不起的石头,我们也可以做到.所以,世上没有全能的上帝.