已知f(x)=x^2-2x=3在区间【0,m】上的值域为【2,3】,求m的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:38:46
已知f(x)=x^2-2x=3在区间【0,m】上的值域为【2,3】,求m的取值范围
xSnP}A`e) \vq[T$㪡ZPP0ڞx~Ij]9;cL^ I=XADh jxA)eA.\dkو )5EgrogPrõbRze+d38B[ qB*Ԙŀ|oW =%C`OIHr)2po*@&a$}3j|]9zB}=Ǜ>#~ᓂ,8+5,հ|>+_cOO%hpAu߸C۾ٿ|hW@zXEhg)T.֙pJ:Ygy0aNFu: LGPǵ ]5M(k^!PnX|kݸv‰Cu3 Ù7}gIlxaQƄ0O nO]w]*=^s

已知f(x)=x^2-2x=3在区间【0,m】上的值域为【2,3】,求m的取值范围
已知f(x)=x^2-2x=3在区间【0,m】上的值域为【2,3】,求m的取值范围

已知f(x)=x^2-2x=3在区间【0,m】上的值域为【2,3】,求m的取值范围
是(x)=x^2-2x+3吧?
x=-2a/b=1 取最小值2
当x>1时单调递增 所以F(m)=3(m>1)

已知f(x)=x^2-2x=3 =3是么意思?
如果是+3得f(x)=x^2-2x+3
f(x)=x^2-2x+1+2=(x-1)^2+2
值域为【2,3】,当
F(x)=2时,X=1
F(x)=3时,X=0或者2 又因为区间【0,m】,所以M为1
如果是-3得f(x)=x^2-2x-3=x^2-2x+1-4
然后解法是一样的,我就不算了...

全部展开

已知f(x)=x^2-2x=3 =3是么意思?
如果是+3得f(x)=x^2-2x+3
f(x)=x^2-2x+1+2=(x-1)^2+2
值域为【2,3】,当
F(x)=2时,X=1
F(x)=3时,X=0或者2 又因为区间【0,m】,所以M为1
如果是-3得f(x)=x^2-2x-3=x^2-2x+1-4
然后解法是一样的,我就不算了,你自己试试。

收起

首先移项,f(x)=x^2-2x-3是一个二次函数.对称轴为y=-b/2a=1 当x=0时 f(x)=3 当x=m 时 f(x)应该等于2 没分。。。好遗憾不答了

已知函数f(x)=x^3-3x^2-9x+11在区间【-2,0】上的最小值 已知函数f(x)=loga(x+3)在区间[-2,-1]上总有lf(x)l 已知函数f(x)=-x^2+8x,求f(x)在区间[0,5]上的最大最小值; 已知函数f(x)=|x-1|(x+3),(1)求函数f(x)的单调区间,并针对单调递减区间给予证明;(2)求函数f(x)在区间[-3,0]上的最值 已知函数f(x)=x3-3x(1)求f(x)的单调区间(2)求f(x)在区间(-3,2)上的最值 已知f(x)=sin²x+2sinxcosx+3cos²x,x∈R,求:函数f(x)在区间[0,π/2]上的值域 已知函数f(x)=e^x+2x^2-3x.求证:函数f(x)在区间[0,1]上存在唯一的极值点 已知函数f(x)=e^x+2x^2-3x.求证函数f(x)在区间[0,1]上存在唯一的极值点 已知函数 f(x)=x^3-3x^2-9x +11求证:在区间[-1,1]上F(X)≥0 已知函数f(x)满足f(x)=2f(1/x),当x属于[1,3],f(x)=lnx,若在区间[1/3,3]函数 已知函数f(x)=x²-2x-1求在区间[0,3]上的最大值和最小值. 已知函数f(x)=sin(π-x)+√3cos(π+x)+1 1求函数f(x)的单调区间 2求函数f(x)在区间[0,π]上的最值及相应的x值 已知函数f(x)=(x^2-2x+1)e^x-x在区间x>1内有解吗? 已知向量a=(x^2,x-1),b=(1-x,t)若函数f(x)=ab在区间(-1,1)上是增函数,求t取值范围f(x)=(x^2)*(1-x)+(x-1)*t =-x^3+x^2+tx-t 对上式求导 f'(x)=-3x^2+2x+t 函数f(x)=ab在区间(-1,1)上是增函数,说明在区间(-1,1)上f'(x)>=0 令f 已知函数f(x)=(k-x)ex,求f(x)在区间[0,2]上的最大值 已知函数f(x)=x分之x²+x+4 (x>0)求证:函数f(x)在区间(0,2 ]内是减函数. 已知函数f(x)=cos(-x/2)+sin(π-x/2) 求f(x)的周期 求f(x)在[0,π]上的减区间 已知f(x)=3x^3-9x,求f(x)的单调间;求f(x)在区间[-3,2]上的最大值与最小值,