已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn=T(2n+1)-Tn.若对n>=k时,总有Cn
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 04:31:18
xQJ@Y&d&R2ZH,ERBhU(R.ҊjmcBw&s+nfs=3g<./M% _fIxzQ
J|e bKO*/_=Ϊ˫q2q0?4.:&eS&a,{+=Yь|ee#hܐ;աOp~B8T*އbžtfwN^R/8nY~sSm\\Rlduf;sSGIS;:$B0E]Җ4q8$̢Se i#8$#l83#A;"|X#
Q$A
2AmP3ld,ZyG
已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn=T(2n+1)-Tn.若对n>=k时,总有Cn
已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn=T(2n+1)-Tn.
若对n>=k时,总有Cn
已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn=T(2n+1)-Tn.若对n>=k时,总有Cn
Sn=n^2+1
Sn-1=(n-1)^2+1
∴an=2n-1
bn=2/(2n-1+1)=1/n
Cn=bn+1+...+b2n+1=1/(n+1)+1/(n+2)..+1/(2n+1)
Cn+1=1/(n+2)+...+1/(2n+1)+1/(2n+2)+1/(2n+3)
Cn-Cn+1=1/(n+1)-1/(2n+2)-1/(2n+3)=1/(2n+2)-1/(2n+2)+1/(2n+2)-1/(2n+3)=1/(2n+2)(2n+3)>0
∴Cn为递减函数
C2=38/60>16/21>C3=319/420
∴k=3
嗯
(1)a1=2,an=Sn-Sn-1=2n-1(n≥2).
∴bn= 1 n (n≥2) 2 3 (n=1) (2)∵cn=bn+1+bn+2+…+b2n+1
=1 n+1 +1 n+2 +…+1 2n+1 ,
∴cn+1-cn=1 2n+2 +1 2n+3 -1 n+1 <0,
已知数列{an}的前n项和为Sn,an+Sn=2,(n
已知数列{an}的前n项和为Sn=-n2-2n,求an
已知数列an的前n项和为Sn,且An=3^n+2n,则Sn等于
1.已知数列an的前n项和为Sn,且Sn=2^n,求通项an;2.已知数列an的前n项和为Sn,且Sn=n^2+3n,求通项an;
已知数列{an}的前n项和为Sn=n^2-3n,求证:数列{an}是等差数列
已知数列{An}的前n项和Sn=3n²-2n,证明数列{An}为等差数列
已知数列an的前n项和为sn 若sn=2n-an,求an
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
一道关于数列 已知数列{An}的前n项和为Sn,Sn=3+2An,求An
已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N*),求数列{an}的通项公式.
已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列
已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an
已知数列{an}的前n项和的公式为Sn=32n-n^2,求数列{|an|}的前n项和S`n
已知:sn为数列{an}的前n项和,sn=n^2+1,求通项公式an.
已知数列an的通向公式是an=|21-2n|,Sn为前n项和,求Sn
(1)已知数列an的前n项和为sn满足sn=an²+bn,求证an是等差数列(2)已知等差数列an的前n项和为sn,求证数列sn/n也成等差数列
已知数列an的前n项和为sn sn=3(的n次方)+1求数列an
已知数列{an}的前n项和为Sn,an+Sn=2,(n属于N),求数列|an|通项公式