已知原函数的微分方程,怎么求原函数有助于回答者给出准确的答案比如要有例子 ,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:44:26
已知原函数的微分方程,怎么求原函数有助于回答者给出准确的答案比如要有例子 ,
xUMoV+(.-d?QՑZ]5ET |% IH3@H&66L}߳WG]BRus=󞣉-zvxJ);>F9`U_3nt3)R+VJN]Wt{wf9CJ#/JZG[aZQZ5f4!etŊ]ߣؙ=kx2t}I-̚wGчD}OkvJ9U4-/fJ͙7u 6>5WTծ?ݗv4T8[]yp@g_7vC9=J5/]Z;&أcEjDŵ&-́9VS^C!u2:F1UfbLE!M0K*D-x:_ *}y'؅b! Cз/w]vCxnmTt,헠3D>$Yv<]4h|}+4 I)* # t;$-K-'v{ITڋ[Su,87=H vLTfޛA0e/_FPK~pW0>`f  K(U51l'ET&c+^p"˔m !7B USXo)Kn/T$hU^v;)Ts;(Y 0>_ !gdY|GUb'5u]} pt"$"R 55(q K\p(X&EߨOqD)ʉ_Ѹ*e;(vR\fRR=a0k5t=~$Q .@^>ȫW/ߋ .qygz&xy5[5qG#*Z{r&" F'?TKQCeSKӧj>v{{sۖYz0f)8"[:p..gp

已知原函数的微分方程,怎么求原函数有助于回答者给出准确的答案比如要有例子 ,
已知原函数的微分方程,怎么求原函数
有助于回答者给出准确的答案
比如要有例子 ,

已知原函数的微分方程,怎么求原函数有助于回答者给出准确的答案比如要有例子 ,
目前最高难度的我只接触到二阶常系数非齐次线性方程.更难的需要工科兄弟们补充了,文科甚至理科已经无能为力.
首先是1阶微分方程.这是最简单的形式.
1阶微分方程分为3种类型:
类型一:可分离变量的微分方程,它的形式如下:
dx/x=dy/y
总之是可以把x和y分开并且x与ds放到一边,y与dy放到等号另一边.
这种微分方程是可以直接积分求解的,
∫dx/x = ∫dy/y => ln|x| = ln|y| + lnC
C是任意常数.永远要知道的是,微分方程有多少阶,就有多少个任意常数.一阶微分方程只有一个任意常数C.
类型二:齐次微分方程
这样的微分方程的特点是(x^2+y^2)dx=(xy)dy括号内的项次数都相同.这个式子里括号内的次数都是2次.它是可以转化为第一种类型来求解的.转化的方法是设u=y/x,把原式的未知项都变成y/x的形式:(x/y + y/x)=dy/dx,然后代入u=y/x(注意:y=ux,因此dy/dx=xdu/dx + u.这个也要代入),然后按照可分离变量类型的齐次方程求解.
类型三:一阶线性方程
一阶线性方程的特点是形式为y'+p(x)y=q(x),其中p(x)和q(x)都是x的函数.它主要是公式法求解.公式为y=[exp-∫p(x)dx]{∫q(x)[exp∫p(x)dx]dx}
二阶微分方程就更复杂了,3种形式的通解,3种形式的特解,特解里面还要考虑3种不同形式的未知项,所以在此不阐述.

解这个微分方程,你的问题太笼统,建议去看微分方程方面的资料。

你的问题太笼统,建议去看微分方程方面的资料。

用不定积分
如原函数的微分方程为Y’=2X+3,\
则原函数为:Y=X^2+3X+C(C为常数).