万分感激∫sinxcosx^4/(1+x^2)dx,积分上限为pi()/2,积分下限为-pi()/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:42:21
万分感激∫sinxcosx^4/(1+x^2)dx,积分上限为pi()/2,积分下限为-pi()/2
x){iG۳7

万分感激∫sinxcosx^4/(1+x^2)dx,积分上限为pi()/2,积分下限为-pi()/2
万分感激
∫sinxcosx^4/(1+x^2)dx,积分上限为pi()/2,积分下限为-pi()/2

万分感激∫sinxcosx^4/(1+x^2)dx,积分上限为pi()/2,积分下限为-pi()/2
∫[-π/2,π/2]sinx(cosx)^4dx/(1+x^2)
=∫[-π/2,0]sinx(cosx)^4dx/(1+x^2) + ∫[0,π/2]sinx(cosx)^4dx/(1+x^2) u=-x
=∫[-π/2,0]sinx(cosx)^4dx/(1+x^2) +∫[0,-π/2]sin(-u)(cos(-u)^4d(-u)/(1+(-u)^2)
=∫[-π/2,0]sinx(cosx)^4dx/(1+x^2) +∫[0,-π/2]sinu(cosu)^4du/(1+u^2)
=∫[-π/2,-π/2]sinx(cosx)^4dx/(1+x^2)
=0
sinx(cosx)^4dx/(1+x^2)奇函数,定积分为0