已知函数fx=(2ax-x^2)e^ax 其中a为常数且a大于等于0 若函数fx在区间(根号2,2)上单调递减 求a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 13:01:00
已知函数fx=(2ax-x^2)e^ax 其中a为常数且a大于等于0 若函数fx在区间(根号2,2)上单调递减 求a的取值范围
x){}K}6uCZQbnEfj\bmOvM|c; 옒t' /zYg[x`F:Ft>w /&=mWx)Ӟ6yt"A;A*wŒ*y~}ӟvlxgD% 5lqFW&Uj#˂- ډ:Ϧh{6 yx-/.H̳2#t

已知函数fx=(2ax-x^2)e^ax 其中a为常数且a大于等于0 若函数fx在区间(根号2,2)上单调递减 求a的取值范围
已知函数fx=(2ax-x^2)e^ax 其中a为常数且a大于等于0 若函数fx在区间(根号2,2)上单调递减 求a的取值范围

已知函数fx=(2ax-x^2)e^ax 其中a为常数且a大于等于0 若函数fx在区间(根号2,2)上单调递减 求a的取值范围
对函数fx求导,得到:(2ax-x^2)ae^ax +(2a-2x)e^ax =(2a^2×x-ax^2+2a-2x)e^ax
fx在区间(根号2,2)上单调递减,故(根号2,2)区间上有:
(2a^2×x-ax^2+2a-2x)e^ax