数列{An}满足a1=3/2,a (n+1 )=a(n)*2-a(n)+1,则m=1/a1+1/a2+1/a3+.+1/a2011的整数部分是多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:32:59
数列{An}满足a1=3/2,a (n+1 )=a(n)*2-a(n)+1,则m=1/a1+1/a2+1/a3+.+1/a2011的整数部分是多少?
xQJ@.8m;Ÿw!"](ueSHfht;w9;3A`i~MyyW>}]ұ;$7'7\C@ .rtʳa؜<fl&%d"y֯>"a BY1g@^YD3ƄF Ai1dzvozM G_

数列{An}满足a1=3/2,a (n+1 )=a(n)*2-a(n)+1,则m=1/a1+1/a2+1/a3+.+1/a2011的整数部分是多少?
数列{An}满足a1=3/2,a (n+1 )=a(n)*2-a(n)+1,则m=1/a1+1/a2+1/a3+.+1/a2011的整数部分是多少?

数列{An}满足a1=3/2,a (n+1 )=a(n)*2-a(n)+1,则m=1/a1+1/a2+1/a3+.+1/a2011的整数部分是多少?
a (n+1 )=a(n)*2-a(n)+1
得a(n+1)-1=an(an-1)
1/[a(n+1)-1]=1/(an-1)-1/an
得1/an=1/(an-1)-1/[a(n+1)-1]
所以m=1/a1+1/a2+1/a3+.+1/a2011
=1/(a1-1)-1/(a2-1)+1/(a2-1)-1/(a3-1)+……+1/(a2011-1)-1/(a2012-1)
=1/(a1-1)-1/(a2012-1)
=2-1/(2012-1)
由于从a3开始an就大于2,所以a2012-1>1故1/(a2012-1)

a(n)*2这句话有问题