太阳上的气体是如何燃烧的?我不是很清楚氧气的存在是不是燃烧的必要条件.

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/26 20:15:51
太阳上的气体是如何燃烧的?我不是很清楚氧气的存在是不是燃烧的必要条件.
x\Yo#Ir+vFRm}Y?؞a_(%"%Z-dЃIOeVHfJ axQʌ⋨ļKqv 3nuSJtWwEsÙɘk?Զ3ыYJ*{-;q/mfx{uyx{+>7'[ [^`5W}|dFf^l:OX>N'F bؼn* |1@6mbE@uQM\5Fe,{U<Ǟ%:Uޡ38Il}|~/b'"i_vK,K;[S Sδ2U`edv}0DZp-1hs27ۄ?a(]S1)dm [RI 1na_dؚ3γL_9C[z],2YIR! ~hF7_;~+p70Y˟tx{kX F.,e !pv"]C i v'얂Q"pF^ΙTŰIK3۔VKO{v]qW:}dgX{'uk2! e/V d'ZK) a3r7W0B1!c79ayGsmw,/DHN"-GNMtF=mͻ녭P)٠((t!Ge*OD954"=Xp3׆#d Y vU@L섀N-xu :hJ|d^:2Gpm`\$xdzI W̛@-]oM2$dv%b^6xe4Sι ~~_w?G$7⌎I;%j0yʼ –Bt<+7d@0Jk:Wn9G 1 (ԀY6F[gDD>|R/N@;R2vz+Bu20]58.jX;h?gXlׂo;N!a#8B k^vquNNk\-C !MkA)&PqueDI<8Sv$nw˹F`Ճut>2Bd^`;m9c\_yzzŴ!v:CbLJ2SFڣwx:áUG@Sc? _QRL |2l@@ұSSݾ?o:c!D]w7/I ˜PWՙͶu~c7u;'\_ySx [!Nwc'Q+1zX-< Gf9DLl/d=Q}8sp iZ&0{q (YY8yJBJ^҇Ǩ[ϤK*@ZH2;$lr>eM%pDX\"OҢIxt< m[9(ɥ {X- S1z/yl'T*WśȔM_z7@VAg* m[^y4!TC׾I#|g1eYe^ 6G\YlWD1!`18bE {`nAҝ[' J)P E 6,+x٘gNEh{[N2MhVhTܴbhynSYP6TtVarh)ʣuG6[l?dKftC>V4DgqwHU !YgBSwK2䆁OTIyA$6d 0h0 ˩A9 #6!}U<(T&Eւwc"C~,fZCt+q++Cv@qTtQS/Oe\RfV}-e Mk8I ݃e\mB޹W~bקb`r;@nN>w΁|\J'ɑcstW)!d*f:5f` *Ng\&4!$T;cY^S}-бR dG\KeqMn*fU.˖uf9L?;kSF̽ύ3C T s}7:}Bny3IaO1臾Sq坴E`_Z@!Ưޠ/Tm/  S{$K͓D!-=׊l07*~ f  ݄<@4Sy$4X+"'F}9bXe{C0-@"ҩ:S2xW!xe7}QV٨lŠ͙^0qAڢ;B˯o3Q9'si=/v ('"TW}戅CDr2 /gΕilGv0Z' pF@T} >*)<>Z;_^ 6$EՉlxCk@yݪp3ZՍG3 =uiN)Τ1vGՉtuœ?$Yu2lPghO1j٬,*JW/C8Gá Xoe$F#8ثZشm k([]ݽ}͏}(:6![>M\k%F!D'! !ABIURlzgdI~)MPҶHx+[ż)K@ 6 6,bC XPęҽ;K%Jbʔ1cHc H*#7򠗼~ˆA|N Tt /rbnE[x-^t /‹nE[x-^t /‹nE[x-^t /‹nE[x[}? 'Et}/]ߋE{/{!PP *MR? X3/"Q_[߲"~AW0 ㌧N+K@߄}6ۦ%8b^4gb*b#>໑d

太阳上的气体是如何燃烧的?我不是很清楚氧气的存在是不是燃烧的必要条件.
太阳上的气体是如何燃烧的?
我不是很清楚氧气的存在是不是燃烧的必要条件.

太阳上的气体是如何燃烧的?我不是很清楚氧气的存在是不是燃烧的必要条件.
太阳上不是燃烧,是核聚变~……

太阳释放能量不是靠燃烧,而是靠核聚变,不需要氧气的
核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变...

全部展开

太阳释放能量不是靠燃烧,而是靠核聚变,不需要氧气的
核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。
相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。
目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。
目前主要的几种可控核聚变方式:
超声波核聚变
激光约束(惯性约束)核聚变
磁约束核聚变(托卡马克)
核聚变
比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的。核聚变的
过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才
能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等。核聚变也会放出巨大的能
量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光
和热就是由核聚变产生的。
核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控
的人工核聚变。而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变
在人们的控制下进行,这就是受控核聚变。
实现受控核聚变具有极其诱人的前景。不仅因为核聚变能放出巨大的能量,而
且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。经过计算,1升海水
中提取出的氘进行核聚变放出的能量相当于100升汽油燃烧释放的能量。全世界的海
水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困
扰。
但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非
常苛刻。发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应。可以想象,
没有什么材料能经受得起1亿度的高温。此外还有许多难以想象的困难需要去克服。
尽管存在着许多困难,人们经过不断研究已取得了可喜的进展。科学家们设计
了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等。可
以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务。
利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的较重的原子核而释出能量。最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量。 核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘。1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂。
第二个优点是既干净又安全。因为它不会产生污染环境的放射性物质,所以是干净的。同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的。
目前实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元。
另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。
原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的。
尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登。
补充内容:
每克氘聚变时所释放的能量为5.8×108kJ,大于每克U-235裂变时所释放的能量(8.2×107KJ)。从能源的角度考虑,核聚变有几个方面比核裂变优越:其一,聚变产物是稳定的氦核,没有放射性污染产生,没有难于处理的废料;其二,聚变原料氘的资源比较丰富,在海水中氘和氢之比为1.5×10-4∶1,地球上海水总量约为1018吨,其中蕴藏着大量的氘,提炼氘比提炼铀容易得多。遗憾的是这个聚变反应需要非常高的温度,以克服两个带正电的氘核之间的巨大排斥力(从理论计算,要克服这种库仑斥力需要109℃的高温)。氢弹的制造原理,就是利用一个小的原子弹作为引爆装置,产生瞬间高温引发上述聚变反应发生强烈爆炸。氢元素的几种同位素之间能发生多种聚变反应,这种变化过程存在于宇宙之间,太阳辐射出来的巨大能量就来源于这类核聚变。但我们目前尚没有办法在地球上利用这类核聚变发电,怎样能取得这样高的温度?用什么材料制造反应器?怎样控制聚变过程等各种问题尚无答案。
回答者:heruichen - 举人 四级 10-12 21:26
评价已经被关闭 目前有 2 个人评价

100% (2) 不好
0% (0)
其他回答共 12 条
太阳是靠自身压力通过热核聚变来产生能量的
回答者:liujun427 - 大魔导师 十三级 10-12 21:26
虽然许多科普读物中是用燃烧一词,但太阳的能量来源于氢的核聚变而不是化学意义上的燃烧。
太阳不是靠氧气燃烧那么简单的!
参见如下解释:
太阳是自己发光发热的炽热的气体星球。它表面的温度约6000摄氏度,中心温度高达1500万摄氏度。太阳的半径约为696000公里,约是地球半径的109倍。它的质量为1.989×1027吨,约是地球的332000倍。太阳的平均密度为1.4克每立方厘米,约为地球密度的1/4。太阳与我们地球的平均距离约1.5亿公里。
太阳的结构从里向外主要分为:中心为热核反应区,核心之外是辐射层,辐射层外为对流层,对流层之外是太阳大气层。
从核物理学理论推知,太阳中心是热核反应区。太阳中心区占整个太阳半径的1/4,约为整个太阳质量的一半以上。这表明太阳中心区的物质密度非常高。每立方厘米可达160克。太阳在自身强大重力吸引下,太阳中心区处于高密度、高温和高压状态。是太阳巨大能量的发祥地。
太阳中心区产生的能量的传递主要靠辐射形式。太阳中心区之外就是辐射层,辐射层的范围是从热核中心区顶部的0.25个太阳半径向外到0.86个太阳半径,这里的温度、密度和压力都是从内向外递减。从体积来说,辐射层占整个太阳体积的绝大部分。
太阳通过热核聚变,靠燃烧集中于它核心处的大量氢气而发光,平均每秒钟要消耗掉600 万吨氢气。就这样再燃烧50亿年以后,太阳将耗尽它的氢气储备,然后核区收缩,核反应将扩展发生到外部,那时它的温度可高达1 亿多度,导致氦聚变的发生。

收起

太阳释放能量不是靠燃烧,而是靠核聚变,不需要氧气的
核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变...

全部展开

太阳释放能量不是靠燃烧,而是靠核聚变,不需要氧气的
核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。
相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。
目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。
目前主要的几种可控核聚变方式:
超声波核聚变
激光约束(惯性约束)核聚变
磁约束核聚变(托卡马克)
核聚变
比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的。核聚变的
过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才
能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等。核聚变也会放出巨大的能
量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光
和热就是由核聚变产生的。
核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控
的人工核聚变。而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变
在人们的控制下进行,这就是受控核聚变。
实现受控核聚变具有极其诱人的前景。不仅因为核聚变能放出巨大的能量,而
且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。经过计算,1升海水
中提取出的氘进行核聚变放出的能量相当于100升汽油燃烧释放的能量。全世界的海
水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困
扰。
但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非
常苛刻。发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应。可以想象,
没有什么材料能经受得起1亿度的高温。此外还有许多难以想象的困难需要去克服。
尽管存在着许多困难,人们经过不断研究已取得了可喜的进展。科学家们设计
了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等。可
以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务。
利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的较重的原子核而释出能量。最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量。 核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘。1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂。
第二个优点是既干净又安全。因为它不会产生污染环境的放射性物质,所以是干净的。同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的。
目前实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元。
另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。
原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的。
尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登。
补充内容:
每克氘聚变时所释放的能量为5.8×108kJ,大于每克U-235裂变时所释放的能量(8.2×107KJ)。从能源的角度考虑,核聚变有几个方面比核裂变优越:其一,聚变产物是稳定的氦核,没有放射性污染产生,没有难于处理的废料;其二,聚变原料氘的资源比较丰富,在海水中氘和氢之比为1.5×10-4∶1,地球上海水总量约为1018吨,其中蕴藏着大量的氘,提炼氘比提炼铀容易得多。遗憾的是这个聚变反应需要非常高的温度,以克服两个带正电的氘核之间的巨大排斥力(从理论计算,要克服这种库仑斥力需要109℃的高温)。氢弹的制造原理,就是利用一个小的原子弹作为引爆装置,产生瞬间高温引发上述聚变反应发生强烈爆炸。氢元素的几种同位素之间能发生多种聚变反应,这种变化过程存在于宇宙之间,太阳辐射出来的巨大能量就来源于这类核聚变。但我们目前尚没有办法在地球上利用这类核聚变发电,怎样能取得这样高的温度?用什么材料制造反应器?怎样控制聚变过程等各种问题尚无答案。
回答者:heruichen - 举人 四级 10-12 21:26
评价已经被关闭 目前有 2 个人评价

100% (2) 不好
0% (0)
其他回答共 12 条
太阳是靠自身压力通过热核聚变来产生能量的
回答者:liujun427 - 大魔导师 十三级 10-12 21:26
虽然许多科普读物中是用燃烧一词,但太阳的能量来源于氢的核聚变而不是化学意义上的燃烧。
回答者:chemistryboy - 举人 四级 10-12 21:27
太阳不是靠氧气燃烧那么简单的!
参见如下解释:
太阳是自己发光发热的炽热的气体星球。它表面的温度约6000摄氏度,中心温度高达1500万摄氏度。太阳的半径约为696000公里,约是地球半径的109倍。它的质量为1.989×1027吨,约是地球的332000倍。太阳的平均密度为1.4克每立方厘米,约为地球密度的1/4。太阳与我们地球的平均距离约1.5亿公里。
太阳的结构从里向外主要分为:中心为热核反应区,核心之外是辐射层,辐射层外为对流层,对流层之外是太阳大气层。
从核物理学理论推知,太阳中心是热核反应区。太阳中心区占整个太阳半径的1/4,约为整个太阳质量的一半以上。这表明太阳中心区的物质密度非常高。每立方厘米可达160克。太阳在自身强大重力吸引下,太阳中心区处于高密度、高温和高压状态。是太阳巨大能量的发祥地。
太阳中心区产生的能量的传递主要靠辐射形式。太阳中心区之外就是辐射层,辐射层的范围是从热核中心区顶部的0.25个太阳半径向外到0.86个太阳半径,这里的温度、密度和压力都是从内向外递减。从体积来说,辐射层占整个太阳体积的绝大部分。
太阳通过热核聚变,靠燃烧集中于它核心处的大量氢气而发光,平均每秒钟要消耗掉600 万吨氢气。就这样再燃烧50亿年以后,太阳将耗尽它的氢气储备,然后核区收缩,核反应将扩展发生到外部,那时它的温度可高达1 亿多度,导致氦聚变的发生。

收起

不是燃烧是热核反应,一个氕核和一个氘核(氕氘都为氢的同位素)核反应会聚变为氦核,在这个过程中有质量减少,减小的那部份质量转变为能量,以光和热释放出来(由爱因斯坦质能理论E=mC^2,C为光速m为质量E为能量)放出的能量十分惊人

太阳的能量输出是靠核聚变产生的,不是靠燃烧。两个氢核聚变成一个氦核,失去少量质量产生能量。可参见爱因斯坦的质能方程

太阳上的气体是如何燃烧的?我不是很清楚氧气的存在是不是燃烧的必要条件. 太阳是如何燃烧的 太阳燃烧太阳是怎么燃烧的? 太阳燃烧的是气体,这个气体是聚在一起被太阳燃烧还是像输油管道一样将气体源源不断输送到太阳那里? 太阳是个燃烧的火球,可是燃烧要氧气,是不是就是说太阳上有氧气? 聚乙烯(普通食品袋,或者塑料薄膜)不完全燃烧产生的蓝色气体是什么成分?有什么办法可以消除么?用什么溶液还是怎么弄?我不是问如何完全燃烧...貌似还有很难闻的气味? 太阳上的火是如何燃烧的要有氧气火才能燃烧,那么宇宙里没有氧气太阳上的火和原始地球上的火(原始地球上的大气层还没有合成氧,有机物等)又是怎样燃烧的呢? 太阳上的气体是怎么产生的 太阳是靠什么燃烧的?太阳上面没有氧气,它是如何燃烧的?在它燃烧之前,太阳是什么变成的? 太阳是由什么组成的?这些气体熊熊燃烧,发出什么和什么? 太阳是由气组成的,这些气体熊熊燃烧,发出光和热.对还是错? 太阳上的火是靠什么燃烧的? 太阳为什么燃烧不完?它的燃料从哪里来?太阳是一个气体大火球吗? 太阳的燃烧从氢如何燃烧到铁? 太阳的燃烧从氢如何燃烧到铁? 太阳上的火燃烧完了怎么办? 太阳上燃烧的是什么成分? 英语翻译Google翻译的是中国国际信托投资公司实业银行我不是很清楚有知道的