怎样求幻和?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 10:00:32
怎样求幻和?
xVRX筻 .U|XDAp!ŶK>'i~aɎ!bWWA/kœ6᭸ZހOo_~ZyOtnާe\EF_GK'"I+:SaSb+ismۓug vN]ųey"v/lmNҼݽp3,;bc*yeú8f6u{@Ŕ{l-⁲%{P*{n}?U !^S:͜>쁰.SA0$*Ӳ(-WbmwsNKÇQ@kzhDHEŐ$P*xdU\z)ճBf6j>Ff S  CҜd #{ۆ$ VJgݳEEGi~5SF\! 9*}d;:O Zɳtfܯ =Gn1=' kB[~%k9[aF57!!+fTBo0؀.r aw"ZT3ZLR@퇿b] p!#q SY՚8zCC6TcLtjU]Yֲ9}@^CᕮCwu.@0L?S}n|^G~KQ"<5bS,25jI -PvEѻ=]@e{p c*i*I+mp ЮojpYLpڪ7}K4kԩmhbҌ+XuA%0 r&nL*(0 T3¯1oFCBTP9X&Za:YI mb=0'Eޠ04%q51u4#j 3~r{-8WgP1 oVxS*1 t 7EBg Ml$\xZٓE@㿻}+;'nۘƞ5]ޑMh "Z' 5`1(0188Ԃ'`ȹcKSl+XPzoI,`Eƃ1֗/>t~ӹ

怎样求幻和?
怎样求幻和?

怎样求幻和?
既然你诚心诚意的问了,那我就大发慈悲的告诉你!……
幻方问题
  【含义】 把n×n个自然数排在正方形的格子中,使各行、各列以及对角线上的各数之和都相等,这样的图叫做幻方.最简单的幻方是三级幻方.
  【数量关系】 每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”.
  三级幻方的幻和=45÷3=15
  五级幻方的幻和=325÷5=65
  【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数.
  例1 把1,2,3,4,5,6,7,8,9这九个数填入九个方格中,使每行、每列、每条对角线上三个数的和相等.
  解 幻和的3倍正好等于这九个数的和,所以幻和为
  (1+2+3+4+5+6+7+8+9)÷3=45÷3=15
  九个数在这八条线上反复出现构成幻和时,每个数用到的次数不全相同,最中心的那个数要用到四次(即出现在中行、中列、和两条对角线这四条线上),四角的四个数各用到三次,其余的四个数各用到两次.看来,用到四次的“中心数”地位重要,宜优先考虑.
  设“中心数”为Χ,因为Χ出现在四条线上,而每条线上三个数之和等于15,所以 (1+2+3+4+5+6+7+8+9)+(4-1)Χ=15×4
  即 45+3Χ=60 所以 Χ=5
  接着用奇偶分析法寻找其余四个偶数的位置,它们
  276
  951
  438
  分别在四个角,再确定其余四个奇数的位置,它们分别
  在中行、中列,进一步尝试,容易得到正确的结果.
  例2 把2,3,4,5,6,7,8,9,10这九个数填到九个方格中,
  使每行、每列、以及对角线上的各数之和都相等.
  解 只有三行,三行用完了所给的9个数,所以每行三数之和为
  (2+3+4+5+6+7+8+9+10)÷3=18
  927
  468
  5103
  假设符合要求的数都已经填好,那么三行、三列、两条对角线共8行上的三个数之和都等于18,我们看18能写成哪三个数之和:
  最大数是10:18=10+6+2=10+5+3
  最大数是9:18=9+7+2=9+6+3=9+5+4
  最大数是8:18=8+7+3=8+6+4
  最大数是7:18=7+6+5 刚好写成8个算式.
  首先确定正中间方格的数.第二横行、第二竖行、两个斜行都用到正中间方格的数,共用了四次.观察上述8个算式,只有6被用了4次,所以正中间方格中应填6.
  然后确定四个角的数.四个角的数都用了三次,而上述8个算式中只有9、7、5、3被用了三次,所以9、7、5、3应填在四个角上.但还应兼顾两条对角线上三个数的和都为18.
  最后确定其它方格中的数.