一道积分计算题∫1/(1+x^4)dx=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:41:55
一道积分计算题∫1/(1+x^4)dx=?
xTN0~800EMU+QUK,U@l0 OSQN}vn(?R)Am4?=Lz~3ɞTw([JY)F/

一道积分计算题∫1/(1+x^4)dx=?
一道积分计算题
∫1/(1+x^4)dx=?

一道积分计算题∫1/(1+x^4)dx=?
∫dx/(1+x^4),
1+x^4=x^4+2x^2+1-2x^2=(x^2-√2x+1)(x^2+√2x+1)
1/(1+x^4)=(Ax+B)/ (x^2-√2x+1)+(Bx+D)/ (x^2+√2x+1),
(A+C)x^3=0,
A=-C,…………(1)
(√2A+B-√2C+D)x^2=0,
√2A+B-√2C+D=0,……(2)
(A+√2B+C-√2D)x=0,
A+√2B+C-√2D=0,………(3)
B+D=1,……….(4),
A=-√2/4,
B=1/2,
C=√2/4,
D=1/2,
1/(x^4+1)=[ (-√2/4)x+1/2]/ (x^2-√2x+1)+[ (√2/4)x+1/2]/ (x^2+√2x+1)
= (-√2/4)(x-√2)/ (x^2-√2x+1)+ (√2/4)(x+√2)/ (x^2+√2x+1)
∫(-√2/4)x+1/2]dx/ (x^2-√2x+1)
=(-√2/4) {(1/2)∫d(x^2-√2x+1)/ (x^2-√2x+1)+
√2/2∫d(x-√2/2)/[(x-√2/2)^2+1/2]}
=(-√2/8)ln(x^2-√2x+1)+ (-√2/4) (√2/2) √2arctan[√2 (x-√2/2)]+C1
=(-√2/8)ln(x^2-√2x+1)- (√2/4) arctan(√2 x-1)+C1
同理∫(√2/4)x+1/2]dx/ (x^2+√2x+1)
=(√2/4) {(1/2)∫d(x^2+√2x+1)/ (x^2+√2x+1)+
√2/2∫d(x+√2/2)/[(x+√2/2)^2+1/2]}
=(√2/8)ln(x^2+√2x+1)+ (√2/4) (√2/2) √2arctan[√2 (x+√2/2)]+C2
=(√2/8)ln(x^2+√2x+1)+ (√2/4) arctan(√2 x+1)+C2
∴∫dx/(1+x^4)= (-√2/8)ln(x^2-√2x+1)-(√2/4) arctan(√2 x-1)
+(√2/8)ln(x^2+√2x+1)+ (√2/4) arctan(√2 x+1)+C
=(√2/8)ln[(x^2+√2x+1)/ (x^2-√2x+1)]+ (√2/4) arctan(√2 x+1)
-(√2/4) arctan(√2 x-1)+C.