∫(-1,1)[e^(-x^2)[in(x+1)/(x-1)]+cosx(sinx)^2]dx=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:32:36
∫(-1,1)[e^(-x^2)[in(x+1)/(x-1)]+cosx(sinx)^2]dx=
xRmkP+Anl^zִ4)-u0Z *DgLbS Ι47m>/xnuY9

∫(-1,1)[e^(-x^2)[in(x+1)/(x-1)]+cosx(sinx)^2]dx=
∫(-1,1)[e^(-x^2)[in(x+1)/(x-1)]+cosx(sinx)^2]dx=

∫(-1,1)[e^(-x^2)[in(x+1)/(x-1)]+cosx(sinx)^2]dx=
∫(-1,1){e^(-x²)[in(x+1)/(1-x)]+cosxsin²x}dx
设f(x)=e^(-x²)[in(x+1)/(1-x)],由于f(-x)=e^(-x²)[ln(-x+1)/(1+x)]=e^(-x²)[ln(x+1)/(1-x)]ֿ¹
=-e^(x²)[ln(x+1)/(1-x)]=-f(x),且x∈[-1,1],故f(x)是奇函数,∴[-1,1]∫e^(x²)[ln(x+1)/(1-x)]dx=0;
∴[-1,1]∫{e^(-x²)[in(x+1)/(1-x)]+cosxsin²x}dx=[-1,1]∫cosxsin²xdx=[-1,1]∫sin²xd(sinx)
=(1/3)sin³x︱[-1,1]=(1/3)[sin³1-sin³(-1)]=(2/3)sin³1=(2/3)sin³(57°17′44.806″)=0.397215491...

题目不对吧?在区间【-1 1】上,(x+1)/(x-1)<0,怎么能取对数呢?∫(-1,1)[e^(-x^2)[in(x+1)/(1-x)]+cosx(sinx)^2]dx= 是1-x的 ,我打错了e^(-x^2)是偶函数,ln(1+x)/(1-x)是奇函数,二者乘积是奇函数,积分值是0。 积分(cosx*(sinx)^2dx)=(sinx)^3/3|上限1下限-1=(2sin1)/3...

全部展开

题目不对吧?在区间【-1 1】上,(x+1)/(x-1)<0,怎么能取对数呢?

收起