设f(x)是定义在区间【-6,11】上的函数.如果f(x)在区间【-6,-2】上递减,在区间【-2,11】上递增,画出f(x)的一个大致图像,从图像上可以发现f(-2)是函数f(x)的一个?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:19:24
设f(x)是定义在区间【-6,11】上的函数.如果f(x)在区间【-6,-2】上递减,在区间【-2,11】上递增,画出f(x)的一个大致图像,从图像上可以发现f(-2)是函数f(x)的一个?
xݑN@_-

设f(x)是定义在区间【-6,11】上的函数.如果f(x)在区间【-6,-2】上递减,在区间【-2,11】上递增,画出f(x)的一个大致图像,从图像上可以发现f(-2)是函数f(x)的一个?
设f(x)是定义在区间【-6,11】上的函数.如果f(x)在区间【-6,-2】上递减,在区间【-2,11】上递增,画出f(x)的一个大致图像,从图像上可以发现f(-2)是函数f(x)的一个?

设f(x)是定义在区间【-6,11】上的函数.如果f(x)在区间【-6,-2】上递减,在区间【-2,11】上递增,画出f(x)的一个大致图像,从图像上可以发现f(-2)是函数f(x)的一个?
如果没有其他条件,粗略画图是坐标轴上画一个圆滑的v型,最低点在x=-2.纵坐标怎么都可以
可以发现f(-2)是函数f(x)的最小值点

极小值点。或者说最小值点。

设f (x)是定义在区间[-6,11]上的函数.果f (x)在区间[-6,-2]上递减,(下面的看补充说明)设f (x)是定义在区间[-6,11]上的函数.如果f (x)在区间[-6,-2]上递减,在区间[-2,11]上递增,画出f (x)的一个 设f(x)是定义在区间[-6,11]上的函数,如果f(x) 在区间[-6,-2]上递减.在区间[-2,11]上递增,画出f(x)的大致图像,从图像可以发现f(-2)是函数f(x)上的一个----------.首先让我不解的是 为什么能这样写区间 设f(x)是定义在区间[-6.11]上的函数,如果f(x)在区间【-6.2】上递减,在区间【-2.11设f(x)是定义在区间[-6.11]上的函数,如果f(x)在区间[-6.2]上递减,在区间[-2.11]上递增,画出f(x)的一个大致的图像 设f (x)是定义在区间[-6, 11]上的函数. 如果f (x)在区间[-6, -2]上递减,在区间[-2, 11]上递增,画出f (x)的一个大致的图象,从图象上可以发现f(-2)是函数f (x)的一个( ) 请给出详细解 设f (x)是定义在区间[-6,11]上的函数.如果f (x)在区间[-6,-2]上递减,在区间[-2,11]上递增,画出f (x)的一个大致的图象,从图象上可以发现f(-2)是函数f (x)的一个( ) 设f(x)是定义在区间[-6,11]上的函数,如果f(x)在区间[-6,-2]上递减,在区间[-2,11]上递增,画出f(x)的一个大致的图象,从图象上可以发现f(-2)是函数f(x)的一个 空 . 设f(x)是定义在区间【-6,11】上的函数.如果f(x)在区间【-6,-2】上递减,在区间【-2,11】上递增,画出f(x)的一个大致图像,从图像上可以发现f(-2)是函数f(x)的一个? 设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上, 一个关于集合的高中数学问题设f(x)是定义在区间【-6,11】上的函数.如果f(x)在区间【-6,-2】上递减,在【-2,11】上递增,画出f(x)的一个大致图像从图像上可以发现f(-2)是函数f(x)的一 设f (x)是定义在区间[-6,11]上的函数.如果f (x)在区间[-6,-2]上递减,在区间[-2,11]上递增,求函数在区间[-6,-11]上的最值(求详解!加急!) 设f(x)是周期为2的周期函数,它在区间(-1,1]上定义为当-1 设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)={ax+1 (1)式,-1 设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)={ax+1 (1)式,-1 设f(x)是定义在R上以4为周期的偶函数,且在区间[4,6]上f(x)=2^x+1. 1)求f(x)在区间[-2,2]上的解析式和值域; 2)求f(x)在区间[4k-2,4k](k∈Z)上的反函数. 设函数f(x)是定义在R上的奇函数,且在区间(-∞,0)上是减函数,求不等式f(3x^2+x-3) 设定义在上的偶函数f(x)在区间上单调递减,若f(1-m) 设定义在[-2.2]上的偶函数f(x)在区间[0.2]上单调递减,若f(1-m) 设f(x)是定义在R上的偶函数,在区间上(-∞,0)递增,且有f(2a^2+a+1)