设向量组α1,α2,…,αn为n维向量组,β1=α1+ α2,β2=α2 +α3,……,βn=αn +α1,当n为偶数,β1,β2,……βn线性相关,当n为奇数,α1 α2……αn与β1,β2,……βn具有相同的相关性
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 22:53:03
xRN@~ֲ[#%A=")2H쾼 ichA]8ɕNS^R6oeT6I7@I#*ކ8Rg7K;w-D8A<, JQM(S1eS)2ELo+&m9t㰥Sf{qLbn ~j
设向量组α1,α2,…,αn为n维向量组,β1=α1+ α2,β2=α2 +α3,……,βn=αn +α1,当n为偶数,β1,β2,……βn线性相关,当n为奇数,α1 α2……αn与β1,β2,……βn具有相同的相关性
设向量组α1,α2,…,αn为n维向量组,β1=α1+ α2,β2=α2 +α3,……,βn=αn +α1,当n为偶数,β1,β2,……βn线性相关,当n为奇数,α1 α2……αn与β1,β2,……βn具有相同的相关性
设向量组α1,α2,…,αn为n维向量组,β1=α1+ α2,β2=α2 +α3,……,βn=αn +α1,当n为偶数,β1,β2,……βn线性相关,当n为奇数,α1 α2……αn与β1,β2,……βn具有相同的相关性
n为偶数时,β1-β2+β3-β4+……+β(n-1)-βn=0,所以β1,β2,……βn线性相关.
n为奇数时,矩阵(β1,β2,……,βn)=(α1,α2,…,αn)C,其中矩阵C=
10...01
01...00
.
00...10
00...11
矩阵C的行列式等于2,C可逆.所以矩阵(β1,β2,……,βn)与(α1,α2,…,αn)的秩相等.所以向量组α1 α2……αn与β1,β2,……βn具有相同的相关性
设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.证明向量Aα1,Aα2,…Aαn线性无关.
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )A.向量组α1,α2,…,αm可由向量组β1,β2,…,βm线性表示B.向量组β1,β2,…,βm可由向量组α1,α2,
n维向量与矩阵乘法.一个矩阵与一组向量的乘法若向量组α1.αs,为n维列向量,设该向量组为B,A为mxn的矩阵,则BA=(Aα1,Aα2,.Aαs).BA的结果怎么的出来的?我脑子转不过来.
设n维向量组α1,……,αm(m
设{α1,α2,…,αr}为n维正交向量组,Q为正交矩阵,bi=Q*αi,证明{β1,β2,…,βr}也为正交向量组.设{α1,α2,…,αr}为n维正交向量组,Q∈Rn×n为正交矩阵,βi=Qαi,证明{β1,β2,…,βr}也为正交向量组.
设向量组A(α1,α2...αm)为n维向量组,已知m>n,则向量组的线性相关与否?求给出解答过程及原理,不要只给一个答案,
设向量组α1,α2,…,αn为n维向量组,β1=α1+ α2,β2=α2 +α3,……,βn=αn +α1,当n为偶数,β1,β2,……βn线性相关,当n为奇数,α1 α2……αn与β1,β2,……βn具有相同的相关性
设n维向量组α1,α2,...,αn线性无关,证明:若n维向量β与每个αi(i=1,2,...,n)都正交,则β=0
试证:若n维单位向量组ε1,ε2,...,εn可由n维向量组α1,α2,...,αn线...试证:若n维单位向量组ε1,ε2,...,εn可由n维向量组α1,α2,...,αn线性表示,则α1,α2,...,αn线性无关
证明α1,α2,…αn线性无关充分必要条件是任一n维向量都可以由它们线性表示设α1,α2,…αn是一组n维向量,
证明向量组线性无关的问题!设向量β是向量组α1,α2,...,αn的线性组合,β=k1*α1,k2*α2,...,kn*αn,若向量组α1,α2,...,αn线性无关,证明β+α1,α2,...,αn线性无关.对了 还有 n>=2且K不等于-1
求一道线性代数的题.设向量组α1,α2,.αn线性无关,讨论向量组β1,β2...βn的线性相关性设向量组α1,α2,.αn线性无关,讨论向量组β1,β2...βn的线性相关性,其中β1=α1+α2. β2=α2+α3.βn-1=αn-1+α1,βn=αn+
设n维向量α(a,0,0.0,a),a
高等代数证明问题设向量β可以由α1α2…αn线性表示,但不能由α1α2…αn-1线性表示.证明,向量组{α1α2…αn}与向量组{α1α2…αn-1,β}等价.
一道线代题,题目不是重点,重点是用什么定理好?设n维基本向量组{ e1,e2,...,en}可由向量组{α1,α2,...,αn}线性表示.证明:α1,α2,...,αn 线性无关.思路1:∵{α1,α2,...,αn}也由基本向量组{ e1,e2,...,en}
N维向量空间向量的秩,证明题设A:α1,α2,……,αr,β,γ,…是若干个n维向量构成的向量组,证明α1,α2,……,αr是A的一个最大线性无关组的充要条件是下面条件都成立:(1)α1,α2,……αr与原向量
设向量组α1,α2,...,αn中,前n-1个向量线性相关,后n-1个向量线性无关,试讨论:(1)α1能否用α2,α3,...,αn-1线性表示;(2)αn能否用α1,α2,...,αn-1线性表示;
设A为n阶可逆矩阵,α1,α2,…,αs(s≤n)都为n维非零列向量,且αiTATαj=0i≠j,证明向量组α1,α2,……,αs线性无关~