求函数y=e^x-1/e^x+1的反函数的定义域.1)中间有个步骤是∵y≠1 ∴e^x>0 (为什么y≠1,又为什么能推出e^x>0)这是为什么啊?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:55:58
求函数y=e^x-1/e^x+1的反函数的定义域.1)中间有个步骤是∵y≠1 ∴e^x>0 (为什么y≠1,又为什么能推出e^x>0)这是为什么啊?
xT[OF+#( iSEi^TcoVR`զp)R4*7.K/hx/g%t*R_]ΜsS5u-lwWTyN'ɌTrFuvS_?D/'Mf2Ы9ݵ$f3W/EAM(V{"nި.ŏ#-Z\؊ڶ*Ж LxTp8V7Z;l|Xػ`f%@|Zw-}KR9Oßԫ5ݢ M\/:r@[ }HQ6Yam `pߵ(ܑEQ"uƨ`R " cLlBFk- c&090F 9G!+ w]|"n Kr&`AU|)%Iߤ 0#=ޫe E1N)зk,}B, QXI7&;Q05s1bR؆GI;P^oIAH(104[G[#K 49զ'.Hh0s|Q.]y,ʆ!A p Z||q(XOSRx&a/-aN YxRdbStpO;`&<Aޏ)NDP`[>y~n- MJOTd&Ί9X|Nl DZ s(3a";ݕy

求函数y=e^x-1/e^x+1的反函数的定义域.1)中间有个步骤是∵y≠1 ∴e^x>0 (为什么y≠1,又为什么能推出e^x>0)这是为什么啊?
求函数y=e^x-1/e^x+1的反函数的定义域.
1)
中间有个步骤是
∵y≠1 ∴e^x>0 (为什么y≠1,又为什么能推出e^x>0)
这是为什么啊?

求函数y=e^x-1/e^x+1的反函数的定义域.1)中间有个步骤是∵y≠1 ∴e^x>0 (为什么y≠1,又为什么能推出e^x>0)这是为什么啊?
反函数的定义域就是原函数的值域.
y=(e^x-1)/(e^x+1)
=(e^x+1-2)/(e^x+1)
=1-2/(e^x+1).(1)
从上式观察,2/(e^x+1)不等于0,所以y不等于1.
e^x>0,不是通过y不等于1来推出的,而是根据函数性质推出的,对于y=e^x为指数函数,其图像是在x轴上方,所以e^x>0.
实际上,本题的结果,从(1)式即可得出:
当x趋近于正无穷大时,2/(e^x+1)趋近于0,此时y有最大值,趋近于1;
当x趋近于负无穷大时,2/(e^x+1)趋近于2,此时y有最小值,趋近于-1.

(1,+∞)

反函数的定义域就是原函数的值域
而y=e^x-1/e^x+1是单调递增函数
所以值域为(1,+∞)
因此反函数的定义域是(1,+∞)

You might remember these from a couple months back when they were decorated with Native American designs well this time around the sneakers are much cleaner. A smooth black leather upper is given a li...

全部展开

You might remember these from a couple months back when they were decorated with Native American designs well this time around the sneakers are much cleaner. A smooth black leather upper is given a little attitude with mint accents on the shoe’s eyelets and tongue plate.
The Wallabee-like shoe is available right now in Asia and very select Nike retailers. Fans of ultra-clean kicks will drool over these especially since they are hard to find. Pick these up as soon as possible if you really want a pair.
Via: USC
Also you will like it:


Nike Hyperdunk Low - White Grey - Detailed Pict

Release Reminder Air Flightposite II LE Black Bl

mens gucci middle top sneakers Adidas Originals by Originals James Bond for David Beckham

收起