利用1/n*(n+1) = 1/n - 1/(n+1)计算1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:42:06
利用1/n*(n+1) = 1/n - 1/(n+1)计算1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)
x){ڱyZyچ @._[|tC{:*t4Fmi$SL;ڸx ``!:0m"` `lF 10A|V˳_,nzp'|EO\ vP.;at/>^

利用1/n*(n+1) = 1/n - 1/(n+1)计算1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)
利用1/n*(n+1) = 1/n - 1/(n+1)计算1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)

利用1/n*(n+1) = 1/n - 1/(n+1)计算1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)
1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)
=1/(x-3)-1/(x-2)-[1/(x-3)-1/(x-1)]+1/(x-2)-1/(x-1)
=1/(x-3)-1/(x-2)-1/(x-3)+1/(x-1)+1/(x-2)-1/(x-1)
=0

0

运用的是裂项的知识:
1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)
=1/(x-2)-1/x-3-1/(x-1)+1/(x-3)+1/(x-1)-1/(x-2)
=0