不难的数学题50分 快的追加50分再等边三角形内的一点到3个顶点的距离分别为3,4,5 求边长x^2+y^2=3^2,(x-a)^2+y^2=4^2,(x-a/2)^2+(y-sqrt(3)/2*a)^2=5^2,得到a=sqrt(25+12*sqrt(3)),同时x = 3/193 * sqrt(25+12*sqrt(3)) *(3

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 23:49:29
不难的数学题50分 快的追加50分再等边三角形内的一点到3个顶点的距离分别为3,4,5 求边长x^2+y^2=3^2,(x-a)^2+y^2=4^2,(x-a/2)^2+(y-sqrt(3)/2*a)^2=5^2,得到a=sqrt(25+12*sqrt(3)),同时x = 3/193 * sqrt(25+12*sqrt(3)) *(3
xV[oF+~ )H}DM79pYT@i.ͥBMJ_X<zf1&fժHF3|~DVv~R$.ߠt?@Foh1ThdaGogv5#AQo:9i׍˼]aM97ǹ]b<2@9@ saJRp4?Ǔ4!2f_dyY'ŅA/ }|ř]}pY5) jQJoG1TEyUB|ۡ.߁z"Q^@ ^"$e u2[˰f2NTJc"99sd˶K9 D(GܴAc`^UJh@=o2Y %X b9 .q(5p^RHzB-Na$Pl:O@Ƅ:_;8Õ*=FFg`exXw j B 6MMN;m+$$NJǸ߸|>ߢҠz[F};K䣄\;gmxyX@_t:j:m?t]$ku3h0[d/yT: \Կ2_>L52GiH%.m ӝj5FEtezo7 /Qnh&N^GI-x 1,ss 1;k*

不难的数学题50分 快的追加50分再等边三角形内的一点到3个顶点的距离分别为3,4,5 求边长x^2+y^2=3^2,(x-a)^2+y^2=4^2,(x-a/2)^2+(y-sqrt(3)/2*a)^2=5^2,得到a=sqrt(25+12*sqrt(3)),同时x = 3/193 * sqrt(25+12*sqrt(3)) *(3
不难的数学题50分 快的追加50分再
等边三角形内的一点到3个顶点的距离分别为3,4,5 求边长
x^2+y^2=3^2,
(x-a)^2+y^2=4^2,
(x-a/2)^2+(y-sqrt(3)/2*a)^2=5^2,
得到
a=sqrt(25+12*sqrt(3)),
同时
x = 3/193 * sqrt(25+12*sqrt(3)) *(3+14*sqrt(3))≈2.866,
y = 6/193 * sqrt(25+12*sqrt(3)) *(25-12*sqrt(3))≈0.887
还有我余弦定理没学呀

不难的数学题50分 快的追加50分再等边三角形内的一点到3个顶点的距离分别为3,4,5 求边长x^2+y^2=3^2,(x-a)^2+y^2=4^2,(x-a/2)^2+(y-sqrt(3)/2*a)^2=5^2,得到a=sqrt(25+12*sqrt(3)),同时x = 3/193 * sqrt(25+12*sqrt(3)) *(3
等边三角形ABC内的一点P到3个顶点的距离分别为PC=3,PA=4,PB=5,求边长
将整个三角形ABC图形以定点C旋转60度,使CB转到CA,三角形内P点转到P‘,A转到A‘
则P‘A‘=PA=4
P‘A=PB=5
P‘C=PC=3
连接PP‘
显然三角形PP‘C为等边三角形 (因为角PCP‘=60度,且PC=P‘C‘)
所以角P‘PC=60度 ------------(1)
所以PP‘=PC=3
在三角形APP‘中:
PP‘=3
PA=4
P‘A=5
所以三角形PP‘A为直角三角形,角PP‘A=90度
所以角APC=角PP‘A+角P‘PC=150度
在△PAC中,PC=3,PA=4,角APC=150度
根据余弦定理得:
cos角APC=(PA²+PC²-AC²)/(2*PA*PC)
AC²=PA²+PC²-(2*PA*PC)*cos角APC
=3²+4²-2*3*4*cos150度
=25+12根号3
边长=AC=√(12√3+25)

不好意思,看错题目了,重新回答。
假设等边三角形ABC的边长为a,取直角坐标系,顶点A为坐标原点(0,0),AB边为X轴正方向,B点坐标为(a,0),C点坐标为(a/2,sqrt(3)/2*a)。假设三角形内的一点P坐标为(x,y),它到A、B、C顶点的距离分别为3,4,5,那么有方程组
x^2+y^2=3^2,
(x-a)^2+y^2=4^2,
(x-a/2)^...

全部展开

不好意思,看错题目了,重新回答。
假设等边三角形ABC的边长为a,取直角坐标系,顶点A为坐标原点(0,0),AB边为X轴正方向,B点坐标为(a,0),C点坐标为(a/2,sqrt(3)/2*a)。假设三角形内的一点P坐标为(x,y),它到A、B、C顶点的距离分别为3,4,5,那么有方程组
x^2+y^2=3^2,
(x-a)^2+y^2=4^2,
(x-a/2)^2+(y-sqrt(3)/2*a)^2=5^2,
求解此方程组,得到
a=sqrt(25+12*sqrt(3)),
同时
x = 3/193 * sqrt(25+12*sqrt(3)) *(3+14*sqrt(3))≈2.866,
y = 6/193 * sqrt(25+12*sqrt(3)) *(25-12*sqrt(3))≈0.887.
看懂了“依心依意888”的解答,佩服,不错的方法。

收起

一楼的方法不错,但过程比较繁杂,其实可以运用相似三角形以及勾股定理可构建一个方程,但我来慢了.