原子的发现在整个化学史有什么意义?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:32:31
原子的发现在整个化学史有什么意义?
x|Yo#ٕ_`ZK]xy'O~"<NW.*hvK6]`M}oIڍmj6<4kˬu۠.s&_1LHc÷SnK5IΚ_b[/̚5*c +~z5;h#}`\C`V,;1$u61%*WrY?ǂ^,GoyΎcn!O8;]T'6eXj^rbtFW.E3"ŞQs;2 I7yA񓠱Q"1r?;\10ݙ,4VRher{GvLBXzUFnP1wۧw;>QW`/3>~ay.w ǃ1ԃ,ǍxHd0o3t;GFkhO/=51Z$x>|AnwD+7wRP [7sm2S3`8W{al3y+*naj<(gHHԹ R@0Qmb[A*0/z^%$GuH+y%Tr:Xf\g#\U9bxHB3src[1`/ 5<P,`PTh%zH%-[ScKuo4rͼgAn}^6mz3,(6 q!\=H1\ v%sX֝ԩʓ&}ph]Mp,IuX۶ZR|,WWueOAgHx8W!4'Td"RHŇ;W[k0>[TB"܀.37=ԏvYйzVّpS!1 tT0>Z5p5@{ou/ܣ< 7~ lD.* AGqa=h7{؝I{`85:>'bz@DH!7A0HZT"vMgxxPhJGjVX<\k ՗{0Й !lc5sJ'M* b Ml8}Arh\e,.@hفнN3j݃AEr܂kq^gLak/vg:hɿEk-XrS$7$j޶B֜㕵G< xGt}^3FS&h`4?Ь+;N"w^*K`x 6mEg៑%DEP~LѢ0#Zk`tf'j땜J,)Gҏ]V!Z3#1?~=Mwvg1l"?HU7 ep9E) qJ8Y#!AKU;a.LNB"-Zei"* #X 4·KSi 05 %~Kf\ R2f@ozUF|nU$Ljbý5h"7ǯAp&CjQ ]@,HVֳZP"^8s8@dt3F. ]WXmAbFM{ǽTʦtFp];PU@G}/V-@HR`_p/ΒI_peіh Qn{+UoYkP1}9G~F0awBl;ԟՊUdW&~YjA3t=B/WpXܲTC!chb0:p_9iv`ZAce`X13}S<PJgbwnMȔ0k!ґn6)p@ uj[]x+2w@3V2K*G>qVF΋F^D̒YrUG ciB3hMϚ7Z" ,oІtgJ"Dald޼Կ5m-X&6)J(yG F0R}Bdo/ 56|A,3ŮM+#nFIPﮍ3U8 e, dwV q M$j bbq eK*AFA$~ cs9m.pS>ch*0p `.@w/&3ΠC`L!kVF ozk8K,&*2=ĩ_PS@Ni"#Ϳ'*_M~ϿOϟ@{4 V'{k: wJ$ӄy*~=>^L<7JCT:6\U "s:.F /W`P%R1[R$@];e o)*,fXe4A·J^ŐgIŢNEy H>іw'-}g˱&^y9EcqpϤLTyN={,c5Ҳ.c;fXO_^'zz'ZZA܎/>{:>pn1bٕ{NMw6\ cd95]jIQ/_~G HDp}/_}3ǗScķOhڠPb4?yrN?6YUg_ëߍ&_G07BJS~6273o7'~mb m՗Er"XlEvs(:;؂ٹ3 :Ǐq%)הMYK*xh36Eh[xyiz1)~|MVlx)Us!{q7l<Úz~I\Tw:`|LְP;=h wu%Hrrc~j ')*&E@{b /ym_uF?RK4 %kP;o/^MM~3WZ6K1X3xlkg%vd.a!|ا .RѼ]ogXWk 1p6zқ,)֞u[GLM~ϗ I(Ҙ ;Wΐ1ӿۖե>G^Έ["ӺöY:wbPUGKH  9Ʀ`_1u vhT#Zsa61'?YVA͗j_%&2f7ܵԶҼϏh+^.9rRCPЧxMtvVm# MT.ldPIyfK֦Z/GӓІtٻ%q] VDp͙JbTgpَj+߉WF:lnD[Xc+xf?Z3ߘw\8qK/T9v" Wd0c^z͛_`CBߺ}H]51y&925)l|&hȼDA͆-ţvd2On8J+ʰnlaj^"pn/L-mSہGZ'rLskk*'v*ɂ]:je]:4~WZc*á&:, :-{+Qj i1VjE~HehFo/wଇ-i}MJW*Ii kSsR+jFD(yVݥ-p+Tڱ55& ,F,Å޼VveX'h%wH`%b?g-6A-Hea+9It*lD'jkDVg;[`Zwm2bZGJ#XSM۠g["?l ./h9alنӁQ7S{K@a43ytt!VQ> 71Pb'2gMu+hLF4C<RVgڞCziͫb&\l,swֵ^ uG.>RK@ K9?FngEAjNz-@): Wyj˨,؏m z0F0OugqŃ;1Y 8@!dL,lU2('1s0Nv&k4 n]PwOtt:~M#qռ]duS!*=b ϯX*,U3B&} Cw`31 uiJ"W׼t㒲`yc-#:+x Yv|ARMs1^FE"a̔`@@)-Mw7\U k".[>wX7'Ά\S.~,$Ʃ6?oȵK%<)0Ʃu)wJNnsB#ɺț]HTŝ:z?,u$0n@ñ/Ʃ?D~Z2c؎ZGRb/Rm{:3J1<9Y,h|steh4sSҰhQbzہ$?@` 7{.#T3MhC 㢚^&^U32þUh,IRQ"߀/JLŮsZޖs3g?e~)}*>~~cS֕qeέ"Pl[3~$izYgmOme4΍jQ}bjjg/~(hM~{)S,PJ˒) qKaNg$5]~J5>0s-r1~[>"yARb nItDj;['Oߍ=d_6 ۑJÇKЩw;| ^4ExX9"U}o!$)d*g  O&E(hZSv,(U!cr(ޙuR7m$A[9镈+EIpq1Wq 4` ;7.b=}~0D WΈfZGnX9MC 'S 2yNb?}ͰƁ/n"4p.ಎE\,,(nEMGFBjsO$eEla7hԂt\NG`@Ӕ鋺e5xڔmCZvI"]{g!) `\~BG3}OoXD> fd6倽3p|"{}e5γCSHjj{!bvPSz$AW+Qə>,71ƾsk^m,Z&q[0. ˈb!$jK?x-xUbhÆAANWTЉ:r4p#E#\ZCn_x%p|Yl,Z%G9 Kb/wַ9ӥ*s9I]\H.{4.;jޝOF=S)Vhy\v#L厽()k~*dR:x !8&{`G?eyh +6n "$k1[K1{6\jY T"+XHGY GrbOҴf]6$r'& pv)*e>_%EԨ4""5.3XU9~CӕYJ)HƲjtT. B!OB6!>W)tGOV?f *:QFZLbቁMh3ἀ{YAұ)%;&wUQMEp)h[AS9eAG/?dQB)6FYKi))+yĖOxwC}7rvqZ*>=:4+-Wv@*uoc8MgDvL"&I`9Or) l礟_Dpg {:Xrk d~AYEigIk\E2 M9Prb9äQb)@$kQHSY0~ %xggh+D~t/ɖsZ6h|gީ_n :%F'mP$źiw h!\WzP5&kl'nd', gRݰ;$qĒY??ONy a"O/=]Jvn,q !ɦ߇`UZf r^{'ΣIdOwy'!HY1Z lϵF$tZ[!_uR9O@F6.l%y2LpuIJ*b+L+S=G/-U!=|>H5|; H#3.w7I mvw0Cq~WՕs?x*"&Z:'}AVFԱRɰ+-Þ|u^~pdZ aQ=Gu9''-y{Oq Huɪ{iKcПrG,o-d塄Lv0JcbaLRv .IWOQ #wd[Ss@ @F^L{MMG.;֦ ]WsRQf:n22EܴQGއ" !w,a ;' q*rzQX'6\"2(`5y ` YJ3 /U=lg |;9S<ݛ/^߿ycS_g߽|쳻7С.L.foycc_cݳ߽)\З|5Bxi"yx o13 5$Ė҃cKCUNZ~q-`UziC[_S~/_÷ϟ_O|3ϧx"½;tlXD\ԃ6s@HzWnnBM[FŗyV#4g5R W? MyţG:26D}j+V4Fˆy_RQg\%yy69Gc8wjH׷xxdr#r&XW@W6^/键v4:,'@;ѺUKpH! ĉcV\k/E-颭AAm% 2oٗakdVa#;* ;(4Gۉ-B6;L)n_߆X-l9c|B9o5=ΰ)7ʌ6=x{E՛V əvƵý^y鏽Dt!y8|

原子的发现在整个化学史有什么意义?
原子的发现在整个化学史有什么意义?

原子的发现在整个化学史有什么意义?
奠定了现代化学的基础,使人们在微观世界里更清楚地认识物质的构成.也为研究物质的变化及其规律性研究打下基础.

1897年,J.J.汤姆逊在研究阴极射线的时候,发现了原子中电子的存在。这打破了从古希腊人那里流传下来的“原子不可分割”的理念,明确地向人们展示:原子是可以继续分割的,它有着自己的内部结构。那么,这个结构是怎么样的呢?汤姆逊那时完全缺乏实验证据,他于是展开自己的想象,勾勒出这样的图景:原子呈球状,带正电荷。而带负电荷的电子则一粒粒地“镶嵌”在这个圆球上。这样的一幅画面,也就是史称的“葡萄干布丁”模...

全部展开

1897年,J.J.汤姆逊在研究阴极射线的时候,发现了原子中电子的存在。这打破了从古希腊人那里流传下来的“原子不可分割”的理念,明确地向人们展示:原子是可以继续分割的,它有着自己的内部结构。那么,这个结构是怎么样的呢?汤姆逊那时完全缺乏实验证据,他于是展开自己的想象,勾勒出这样的图景:原子呈球状,带正电荷。而带负电荷的电子则一粒粒地“镶嵌”在这个圆球上。这样的一幅画面,也就是史称的“葡萄干布丁”模型,电子就像布丁上的葡萄干一样。
但是,1910年,卢瑟福和学生们在他的实验室里进行了一次名留青史的实验。他们用α粒子(带正电的氦核)来轰击一张极薄的金箔,想通过散射来确认那个“葡萄干布丁”的大小和性质。但是,极为不可思议的情况出现了:有少数α粒子的散射角度是如此之大,以致超过90度。对于这个情况,卢瑟福自己描述得非常形象:“这就像你用十五英寸的炮弹向一张纸轰击,结果这炮弹却被反弹了回来,反而击中了你自己一样”。
卢瑟福发扬了亚里士多德前辈“吾爱吾师,但吾更爱真理”的优良品格,决定修改汤姆逊的葡萄干布丁模型。他认识到,α粒子被反弹回来,必定是因为它们和金箔原子中某种极为坚硬密实的核心发生了碰撞。这个核心应该是带正电,而且集中了原子的大部分质量。但是,从α粒子只有很少一部分出现大角度散射这一情况来看,那核心占据的地方是很小的,不到原子半径的万分之一。
于是,卢瑟福在次年(1911)发表了他的这个新模型。在他描述的原子图象中,有一个占据了绝大部分质量的“原子核”在原子的中心。而在这原子核的四周,带负电的电子则沿着特定的轨道绕着它运行。这很像一个行星系统(比如太阳系),所以这个模型被理所当然地称为“行星系统”模型。在这里,原子核就像是我们的太阳,而电子则是围绕太阳运行的行星们。
但是,这个看来完美的模型却有着自身难以克服的严重困难。因为物理学家们很快就指出,带负电的电子绕着带正电的原子核运转,这个体系是不稳定的。两者之间会放射出强烈的电磁辐射,从而导致电子一点点地失去自己的能量。作为代价,它便不得不逐渐缩小运行半径,直到最终“坠毁”在原子核上为止,整个过程用时不过一眨眼的工夫。换句话说,就算世界如同卢瑟福描述的那样,也会在转瞬之间因为原子自身的坍缩而毁于一旦。原子核和电子将不可避免地放出辐射并互相中和,然后把卢瑟福和他的实验室,乃至整个英格兰,整个地球,整个宇宙都变成一团混沌。
不过,当然了,虽然理论家们发出如此阴森恐怖的预言,太阳仍然每天按时升起,大家都活得好好的。电子依然快乐地围绕原子打转,没有一点失去能量的预兆。而丹麦的年轻人尼尔斯.玻尔照样安安全全地抵达了曼彻斯特,并开始谱写物理史上属于他的华彩篇章。
玻尔没有因为卢瑟福模型的困难而放弃这一理论,毕竟它有着α粒子散射实验的强力支持。相反,玻尔对电磁理论能否作用于原子这一人们从未涉足过的层面,倒是抱有相当的怀疑成分。曼彻斯特的生活显然要比剑桥令玻尔舒心许多,虽然他和卢瑟福两个人的性格是如此不同,后者是个急性子,永远精力旺盛,而他玻尔则像个害羞的大男孩,说一句话都显得口齿不清。但他们显然是绝妙的一个团队,玻尔的天才在卢瑟福这个老板的领导下被充分地激发出来,很快就在历史上激起壮观的波澜。
1912年7月,玻尔完成了他在原子结构方面的第一篇论文,历史学家们后来常常把它称作“曼彻斯特备忘录”。玻尔在其中已经开始试图把量子的概念结合到卢瑟福模型中去,以解决经典电磁力学所无法解释的难题。但是,一切都只不过是刚刚开始而已,在那片还没有前人涉足的处女地上,玻尔只能一步步地摸索前进。没有人告诉他方向应该在哪里,而他的动力也不过是对于卢瑟福模型的坚信和年轻人特有的巨大热情。玻尔当时对原子光谱的问题一无所知,当然也看不到它后来对于原子研究的决定性意义,不过,革命的方向已经确定,已经没有什么能够改变量子论即将崭露头角这个事实了。
在浓云密布的天空中,出现了一线微光。虽然后来证明,那只是一颗流星,但是这光芒无疑给已经僵硬而老化的物理世界注入了一种新的生机,一种有着新鲜气息和希望的活力。这光芒点燃了人们手中的火炬,引导他们去寻找真正的永恒的光明。
终于,7月24日,玻尔完成了他在英国的学习,动身返回祖国丹麦。在那里,他可爱的未婚妻玛格丽特正在焦急地等待着他,而物理学的未来也即将要向他敞开心扉。在临走前,玻尔把他的论文交给卢瑟福过目,并得到了热切的鼓励。只是,卢瑟福有没有想到,这个青年将在怎样的一个程度上,改变人们对世界的终极看法呢?
是的,是的,时机已到。伟大的三部曲即将问世,而真正属于量子的时代,也终于到来。
*********
饭后闲话:诺贝尔奖得主的幼儿园
卢瑟福本人是一位伟大的物理学家,这是无需置疑的。但他同时更是一位伟大的物理导师,他以敏锐的眼光去发现人们的天才,又以伟大的人格去关怀他们,把他们的潜力挖掘出来。在卢瑟福身边的那些助手和学生们,后来绝大多数都出落得非常出色,其中更包括了为数众多的科学大师们。
我们熟悉的尼尔斯.玻尔,20世纪最伟大的物理学家之一,1922年诺贝尔物理奖得主,量子论的奠基人和象征。在曼彻斯特跟随过卢瑟福。
保罗.狄拉克(Paul Dirac),量子论的创始人之一,同样伟大的科学家,1933年诺贝尔物理奖得主。他的主要成就都是在剑桥卡文迪许实验室做出的(那时卢瑟福接替了J.J.汤姆逊成为这个实验室的主任)。狄拉克获奖的时候才31岁,他对卢瑟福说他不想领这个奖,因为他讨厌在公众中的名声。卢瑟福劝道,如果不领奖的话,那么这个名声可就更响了。
中子的发现者,詹姆斯.查德威克(James Chadwick)在曼彻斯特花了两年时间在卢瑟福的实验室里。他于1935年获得诺贝尔物理奖。
布莱克特(Patrick M. S. Blackett)在一次大战后辞去了海军上尉的职务,进入剑桥跟随卢瑟福学习物理。他后来改进了威尔逊云室,并在宇宙线和核物理方面作出了巨大的贡献,为此获得了1948年的诺贝尔物理奖。
1932年,沃尔顿(E.T.S Walton)和考克劳夫特(John Cockcroft)在卢瑟福的卡文迪许实验室里建造了强大的加速器,并以此来研究原子核的内部结构。这两位卢瑟福的弟子在1951年分享了诺贝尔物理奖金。
这个名单可以继续开下去,一直到长得令人无法忍受为止:英国人索迪(Frederick Soddy),1921年诺贝尔化学奖。瑞典人赫维西(Georg von Hevesy),1943年诺贝尔化学奖。德国人哈恩(Otto Hahn),1944年诺贝尔化学奖。英国人鲍威尔(Cecil Frank Powell),1950年诺贝尔物理奖。美国人贝特(Hans Bethe),1967年诺贝尔物理奖。苏联人卡皮查(P.L.Kapitsa),1978年诺贝尔化学奖。
除去一些稍微疏远一点的case,卢瑟福一生至少培养了10位诺贝尔奖得主(还不算他自己本人)。当然,在他的学生中还有一些没有得到诺奖,但同样出色的名字,比如汉斯.盖革(Hans Geiger,他后来以发明了盖革计数器而著名)、亨利.莫斯里(Henry Mosley,一个被誉为有着无限天才的年轻人,可惜死在了一战的战场上)、恩内斯特.马斯登(Ernest Marsden,他和盖革一起做了α粒子散射实验,后来被封为爵士)……等等,等等。
卢瑟福的实验室被后人称为“诺贝尔奖得主的幼儿园”。他的头像出现在新西兰货币的最大面值——100元上面,作为国家对他最崇高的敬意和纪念。

1912年8月1日,玻尔和玛格丽特在离哥本哈根不远的一个小镇上结婚,随后他们前往英国展开蜜月。当然,有一个人是万万不能忘记拜访的,那就是玻尔家最好的朋友之一,卢瑟福教授。
虽然是在蜜月期,原子和量子的图景仍然没有从玻尔的脑海中消失。他和卢瑟福就此再一次认真地交换了看法,并加深了自己的信念。回到丹麦后,他便以百分之二百的热情投入到这一工作中去。揭开原子内部的奥秘,这一梦想具有太大的诱惑力,令玻尔完全无法抗拒。
为了能使大家跟得上我们史话的步伐,我们还是再次描述一下当时玻尔面临的处境。卢瑟福的实验展示了一个全新的原子面貌:有一个致密的核心处在原子的中央,而电子则绕着这个中心运行,像是围绕着太阳的行星。然而,这个模型面临着严重的理论困难,因为经典电磁理论预言,这样的体系将会无可避免地释放出辐射能量,并最终导致体系的崩溃。换句话说,卢瑟福的原子是不可能稳定存在超过1秒钟的。
玻尔面临着选择,要么放弃卢瑟福模型,要么放弃麦克斯韦和他的伟大理论。玻尔勇气十足地选择了放弃后者。他以一种深刻的洞察力预见到,在原子这样小的层次上,经典理论将不再成立,新的革命性思想必须被引入,这个思想就是普朗克的量子以及他的h常数。
应当说这是一个相当困难的任务。如何推翻麦氏理论还在其次,关键是新理论要能够完美地解释原子的一切行为。玻尔在哥本哈根埋头苦干的那个年头,门捷列夫的元素周期律已经被发现了很久,化学键理论也已经被牢固地建立。种种迹象都表明在原子内部,有一种潜在的规律支配着它们的行为,并形成某种特定的模式。原子世界像一座蕴藏了无穷财宝的金字塔,但如何找到进入其内部的通道,却是一个让人挠头不已的难题。
然而,像当年的贝尔佐尼一样,玻尔也有着一个探险家所具备的最宝贵的素质:洞察力和直觉,这使得他能够抓住那个不起眼,但却是唯一的,稍纵即逝的线索,从而打开那扇通往全新世界的大门。1913年初,年轻的丹麦人汉森(Hans Marius Hansen)请教玻尔,在他那量子化的原子模型里如何解释原子的光谱线问题。对于这个问题,玻尔之前并没有太多地考虑过,原子光谱对他来说是陌生和复杂的,成千条谱线和种种奇怪的效应在他看来太杂乱无章,似乎不能从中得出什么有用的信息。然而汉森告诉玻尔,这里面其实是有规律的,比如巴尔末公式就是。他敦促玻尔关心一下巴尔末的工作。
突然间,就像伊翁(Ion)发现了藏在箱子里的绘着戈耳工的麻布,一切都豁然开朗。山重水复疑无路,柳暗花明又一村。在谁也没有想到的地方,量子得到了决定性的突破。1954年,玻尔回忆道:当我一看见巴尔末的公式,一切就都清楚不过了。
要从头回顾光谱学的发展,又得从伟大的本生和基尔霍夫说起,而那势必又是一篇规模宏大的文字。鉴于篇幅,我们只需要简单地了解一下这方面的背景知识,因为本史话原来也没有打算把方方面面都事无巨细地描述完全。概括来说,当时的人们已经知道,任何元素在被加热时都会释放出含有特定波长的光线,比如我们从中学的焰色实验中知道,钠盐放射出明亮的黄光,钾盐则呈紫色,锂是红色,铜是绿色……等等。将这些光线通过分光镜投射到屏幕上,便得到光谱线。各种元素在光谱里一览无余:钠总是表现为一对黄线,锂产生一条明亮的红线和一条较暗的橙线,钾则是一条紫线。总而言之,任何元素都产生特定的唯一谱线。
但是,这些谱线呈现什么规律以及为什么会有这些规律,却是一个大难题。拿氢原子的谱线来说吧,这是最简单的原子谱线了。它就呈现为一组线段,每一条线都代表了一个特定的波长。比如在可见光区间内,氢原子的光谱线依次为:656,484,434,410,397,388,383,380……纳米。这些数据无疑不是杂乱无章的,1885年,瑞士的一位数学教师巴尔末(Johann Balmer)发现了其中的规律,并总结了一个公式来表示这些波长之间的关系,这就是著名的巴尔末公式。将它的原始形式稍微变换一下,用波长的倒数来表示,则显得更加简单明了:
ν=R(1/2^2 - 1/n^2)
其中的R是一个常数,称为里德伯(Rydberg)常数,n是大于2的正整数(3,4,5……等等)。
在很长一段时间里,这是一个十分有用的经验公式。但没有人可以说明,这个公式背后的意义是什么,以及如何从基本理论将它推导出来。但是在玻尔眼里,这无疑是一个晴天霹雳,它像一个火花,瞬间点燃了玻尔的灵感,所有的疑惑在那一刻变得顺理成章了,玻尔知道,隐藏在原子里的秘密,终于向他嫣然展开笑颜。
我们来看一下巴耳末公式,这里面用到了一个变量n,那是大于2的任何正整数。n可以等于3,可以等于4,但不能等于3.5,这无疑是一种量子化的表述。玻尔深呼了一口气,他的大脑在急速地运转,原子只能放射出波长符合某种量子规律的辐射,这说明了什么呢?我们回忆一下从普朗克引出的那个经典量子公式:E = hν。频率(波长)是能量的量度,原子只释放特定波长的辐射,说明在原子内部,它只能以特定的量吸收或发射能量。而原子怎么会吸收或者释放能量的呢?这在当时已经有了一定的认识,比如斯塔克(J.Stark)就提出,光谱的谱线是由电子在不同势能的位置之间移动而放射出来的,英国人尼科尔森(J.W.Nicholson)也有着类似的想法。玻尔对这些工作无疑都是了解的。
一个大胆的想法在玻尔的脑中浮现出来:原子内部只能释放特定量的能量,说明电子只能在特定的“势能位置”之间转换。也就是说,电子只能按照某些“确定的”轨道运行,这些轨道,必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴耳末公式的能量来。
我们可以这样来打比方。如果你在中学里好好地听讲过物理课,你应该知道势能的转化。一个体重100公斤的人从1米高的台阶上跳下来,他/她会获得1000焦耳的能量,当然,这些能量会转化为落下时的动能。但如果情况是这样的,我们通过某种方法得知,一个体重100公斤的人跳下了若干级高度相同的台阶后,总共释放出了1000焦耳的能量,那么我们关于每一级台阶的高度可以说些什么呢?
明显而直接的计算就是,这个人总共下落了1米,这就为我们台阶的高度加上了一个严格的限制。如果在平时,我们会承认,一个台阶可以有任意的高度,完全看建造者的兴趣而已。但如果加上了我们的这个条件,每一级台阶的高度就不再是任意的了。我们可以假设,总共只有一级台阶,那么它的高度就是1米。或者这个人总共跳了两级台阶,那么每级台阶的高度是0.5米。如果跳了3次,那么每级就是1/3米。如果你是间谍片的爱好者,那么大概你会推测每级台阶高1/39米。但是无论如何,我们不可能得到这样的结论,即每级台阶高0.6米。道理是明显的:高0.6米的台阶不符合我们的观测(总共释放了1000焦耳能量)。如果只有一级这样的台阶,那么它带来的能量就不够,如果有两级,那么总高度就达到了1.2米,导致释放的能量超过了观测值。如果要符合我们的观测,那么必须假定总共有一又三分之二级台阶,而这无疑是荒谬的,因为小孩子都知道,台阶只能有整数级。
在这里,台阶数“必须”是整数,就是我们的量子化条件。这个条件就限制了每级台阶的高度只能是1米,或者1/2米,而不能是这其间的任何一个数字。
原子和电子的故事在道理上基本和这个差不多。我们还记得,在卢瑟福模型里,电子像行星一样绕着原子核打转。当电子离核最近的时候,它的能量最低,可以看成是在“平地”上的状态。但是,一旦电子获得了特定的能量,它就获得了动力,向上“攀登”一个或几个台阶,到达一个新的轨道。当然,如果没有了能量的补充,它又将从那个高处的轨道上掉落下来,一直回到“平地”状态为止,同时把当初的能量再次以辐射的形式释放出来。
关键是,我们现在知道,在这一过程中,电子只能释放或吸收特定的能量(由光谱的巴尔末公式给出),而不连续不断的。玻尔做出了合理的推断:这说明电子所攀登的“台阶”,它们必须符合一定的高度条件,而不能像经典理论所假设的那样,是连续而任意的。连续性被破坏,量子化条件必须成为原子理论的主宰。
我们不得不再一次用到量子公式E = hν,还请各位多多包涵。史蒂芬.霍金在他那畅销书《时间简史》的Acknowledgements里面说,插入任何一个数学公式都会使作品的销量减半,所以他考虑再三,只用了一个公式E = mc2。我们的史话本是戏作,也不考虑那么多,但就算列出公式,也不强求各位看客理解其数学意义。唯有这个E = hν,笔者觉得还是有必要清楚它的含义,这对于整部史话的理解也是有好处的,从科学意义上来说,它也决不亚于爱因斯坦的那个E = mc2。所以还是不厌其烦地重复一下这个方程的描述:E代表能量,h是普朗克常数,ν是频率。
回到正题,玻尔现在清楚了,氢原子的光谱线代表了电子从一个特定的台阶跳跃到另外一个台阶所释放的能量。因为观测到的光谱线是量子化的,所以电子的“台阶”(或者轨道)必定也是量子化的,它不能连续而取任意值,而必须分成“底楼”,“一楼”,“二楼”等,在两层“楼”之间,是电子的禁区,它不可能出现在那里。正如一个人不能悬在两级台阶之间漂浮一样。如果现在电子在“三楼”,它的能量用W3表示,那么当这个电子突发奇想,决定跳到“一楼”(能量W1)的期间,它便释放出了W3-W1的能量。我们要求大家记住的那个公式再一次发挥作用,W3-W1 = hν。所以这一举动的直接结果就是,一条频率为ν的谱线出现在该原子的光谱上。
玻尔所有的这些思想,转化成理论推导和数学表达,并以三篇论文的形式最终发表。这三篇论文(或者也可以说,一篇大论文的三个部分),分别题名为《论原子和分子的构造》(On the Constitution of Atoms and Molecules),《单原子核体系》(Systems Containing Only a Single Nucleus)和《多原子核体系》(Systems Containing Several Nuclei),于1913年3月到9月陆续寄给了远在曼彻斯特的卢瑟福,并由后者推荐发表在《哲学杂志》(Philosophical Magazine)上。这就是在量子物理历史上划时代的文献,亦即伟大的“三部曲”。
这确确实实是一个新时代的到来。如果把量子力学的发展史分为三部分,1900年的普朗克宣告了量子的诞生,那么1913年的玻尔则宣告了它进入了青年时代。一个完整的关于量子的理论体系第一次被建造起来,虽然我们将会看到,这个体系还留有浓重的旧世界的痕迹,但它的意义却是无论如何不能低估的。量子第一次使全世界震惊于它的力量,虽然它的意识还有一半仍在沉睡中,虽然它自己仍然置身于旧的物理大厦之内,但它的怒吼已经无疑地使整个旧世界摇摇欲坠,并动摇了延绵几百年的经典物理根基。神话中的巨人已经开始苏醒,那些藏在古老城堡里的贵族们,颤抖吧!

收起