sina^2+2sinc^2=2cosa,y=sina^2+sinc^2的最大和最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 15:52:43
sina^2+2sinc^2=2cosa,y=sina^2+sinc^2的最大和最小值
x)+K36qFFʼn:PaY-4<]cCӆ=6IE/HB5eCs kb,2,QM :R 0apg Ov/ް'H"sI~qAbgQu

sina^2+2sinc^2=2cosa,y=sina^2+sinc^2的最大和最小值
sina^2+2sinc^2=2cosa,y=sina^2+sinc^2的最大和最小值

sina^2+2sinc^2=2cosa,y=sina^2+sinc^2的最大和最小值
Y=sina²+sinc²
=2coa-sinc²
因 -1 ≤cosa≤1
-1 ≤sina≤1
所以最大值Y=2+1=3
最小值Y=-2-1=-3