已知数列{an}的各项均为正整数,对于n=1,2,3……an+1= 5an+27(an为奇数) an/2^k (an为偶数,其中k为使an+1)为奇数的正整数若存在m属于n*,当n>m且an为奇数时,an恒为常数p,求p.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:49:32
已知数列{an}的各项均为正整数,对于n=1,2,3……an+1= 5an+27(an为奇数) an/2^k (an为偶数,其中k为使an+1)为奇数的正整数若存在m属于n*,当n>m且an为奇数时,an恒为常数p,求p.
xSN@~awcH<PiZVpD0Bh#@$W:%~of5YW7~W.N?o͕[ww[W@@6kAtx E T\@; \'XXA<j]먝Y3? 5&po6 jq$H\;M[/Zϸ9<|> c.0Ԧ0!h0\ˆ&LõrQ1N&R51y5Ɇ/zgrZ!U$SvkK沌|ww.DvT 8ăM8|]xfe `cl,`!B8kHV^SX[V\0 N

已知数列{an}的各项均为正整数,对于n=1,2,3……an+1= 5an+27(an为奇数) an/2^k (an为偶数,其中k为使an+1)为奇数的正整数若存在m属于n*,当n>m且an为奇数时,an恒为常数p,求p.
已知数列{an}的各项均为正整数,对于n=1,2,3……
an+1= 5an+27(an为奇数) an/2^k (an为偶数,其中k为使an+1)为奇数的正整数
若存在m属于n*,当n>m且an为奇数时,an恒为常数p,求p.

已知数列{an}的各项均为正整数,对于n=1,2,3……an+1= 5an+27(an为奇数) an/2^k (an为偶数,其中k为使an+1)为奇数的正整数若存在m属于n*,当n>m且an为奇数时,an恒为常数p,求p.
由题设知,a1=11,
a2=3×33+5=62,
a3=382=19,
a4=3×19+5=62,
a5=622=31,
a6=3×31+5=98,
a7=982=49,
a8=3×49+5=152,
a9=15223=19,
∴{an}从第3项开始是周期为6的周期数列,
∴a100=a3+(6×16+1)=a4=62.
若存在m∈N*,当n>m且an为奇数时,an恒为常数p,
则an=p,an+1=3p+5,an+2=3p+52k=p,
∴(3-2k)p=-5,
∵数列{an}的各项均为正整数,
∴当k=2时,p=5,
当k=3时,p=1.
故答案为:1或5.

已知各项均为正整数的数列an满足an 已知各项均为正数的数列{an},对于任意正整数n,点(an,sn)在直线y=1/2(x2+x)上.求证:数列{an}是等差数列. 已知数列{an}的各项均为正整数,对于n=1,2,3……an+1= 5an+27(an为奇数) an/2^k (an为偶数,其中k为使an+1)为奇数的正整数若存在m属于n*,当n>m且an为奇数时,an恒为常数p,求p. 已知各项均为正数的数列{an}的前n项和为Sn,且6Sn=(an+1)(an+2),n为正整数,求an 数列{an}的各项均为正数,前n项和为Sn,对于n为正整数,总有an,根号下2Sn,a(n+1)成等比数列,且a1=1求{an}的通项 a1+a2+...+ak=a1×a2×...×ak,an+k=k+an(N属于正整数已知各项均为正整数的数列an满足an≤an+1,且存在正整数k,使得a1+a2+...+ak=a1×a2×...×ak,an+k=k+an(N属于正整数)(1)求数列{an}的通项公式;(2)若数列b 若数列{an}是等差数列,且对任意正整数n都有Sn3=(Sn)^3成立,求数列{an}的通项公式.已知无穷数列{an}的各项均为正整数,Sn数列的前n项和.(1)若数列{an}是等差数列,且对任意正整数n都有S(n^3)=(Sn 一道数学题,有关数列的已知各项均不为零的数列{ak}的前k项和为Sk,且Sk=(1/2)ak*a(k+1)(k∈N*)其中a1=1.是否存在实数a使得不等式(1/an)^a<2^(an)对于任意正整数n都成立?若存在,试求岀实数 已知sn为数列{an}的前n项和,a1=a为正整数,sn=ka(n+1),其中常数k满足0<|k|<1.求证:数列{an}从第二项起,各项组成等比数列;对于每一个正整数m,若将数列中的三项a(m+1),a(m+2),a(m+3)按从 数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N+,总有an,Sn,an 对于每项均是正整数的数列A:a1,a2,a3,…,an,定义变换T1,T1将数列A变换为数列T1(A):n,a1-1,a2-1,…,an-1对于每项均是非负整数的数列B:b1,b2,b3,…,bm,定义变换T2 ,T2将数列B各项从大到小排列,然后 接上:如题:已知各项均不为零的数列{a[n]},定义向量C[n]=(a[n],a[n+1]),向量b[n]=(n,n+1),n∈正整数,则下列命题中为真命题的是()A.若对于任意n∈正整数总有向量C[n]平行向量b[n]成立,则数列{a[n]} 已知数列{an}的各项满足:a1=1-3k,an=4^n-1-3an-1(k属于R,n属于正整数,n≥2)则数列{an}的通项公式为 已知数列{an}的各项为正数,前n项和为Sn,且Sn=an(an+1)/2,n属于正整数 (1)求证数列{an }是等差数列 (2) 已知数列{an},{bn}是各项均为正数的等比数列设an=bn/an(n 已知各项均为正数的数列{an}满足[a右下(n+1)] ^2=2an^2+an*a(右下(n+1)),且a2+a4=2a3+4,(1)证明数列{an}为等比数列并求通项(2)设数列{bn}满足bn=(nan)/[(2n+1)*2^n],是否存在正整数m,n(1 已知正数数列{an}的前n项和为Sn,且对于任意正整数n满足2根号Sn=an+1 求an通项 已知正数数列{an}的前n项和为Sn,且对于任意正整数n满足2根号Sn=an+1 求an通项