show that there must be at least 90 ways to chosse six integers from 1 to 15 so that all the choices have the same sum 证明从1到15中至少有90种的(任取6个数的和)相等的取法提示用鸽巢原理不用具体的取法,只要证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 15:43:38
show that there must be at least 90 ways to chosse six integers from 1 to 15 so that all the choices have the same sum 证明从1到15中至少有90种的(任取6个数的和)相等的取法提示用鸽巢原理不用具体的取法,只要证明
xRj1cqFF7Q*#fcPRuCC(i`;dtQE7s!FiJ=ZJD!EE8T)TL@G >)PWP]URJ&ʹ$ JVb8ee[ -sT'8{ğdY9ӻaC@좱ZGuwI|0WMuۧLcy,DW1Oa={; :V񗒠1ʟ|?v  0  BA$"xͨûaWX\`  .Ǐq,Qid?+

show that there must be at least 90 ways to chosse six integers from 1 to 15 so that all the choices have the same sum 证明从1到15中至少有90种的(任取6个数的和)相等的取法提示用鸽巢原理不用具体的取法,只要证明
show that there must be at least 90 ways to chosse six integers from 1 to 15 so that all the choices have the same sum
证明从1到15中至少有90种的(任取6个数的和)相等的取法
提示用鸽巢原理
不用具体的取法,只要证明不止90种就行,请给出简要的过程,

show that there must be at least 90 ways to chosse six integers from 1 to 15 so that all the choices have the same sum 证明从1到15中至少有90种的(任取6个数的和)相等的取法提示用鸽巢原理不用具体的取法,只要证明
和最小1+2+3+4+5+6=21
和最大15+14+13+12+11+10=75
共6C15种取法,共5005种
和共75-21+1=55种
5005/55=91>90
不止90种