求高中阶段所有向量公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:35:45
求高中阶段所有向量公式
xXKOW+ÖƸ]f"TW4׫JU5,ph3`c'B#856R/`={_wU6ܹ97w? >;{kM[V*r@v+ϓ_@5/?:75.̄^&4M\| ޛrqmj؆۩OJrcޒg/EiMgbi#=#m1cf,i$ca&=U<_4]wĈy4RV-ޏ f,"byPC viHNl{MY)s:-4:L&$QTL$OOә&ˍ^qSRO\KwK ݽFBT]C43NqډW5sWO:+Gظ ʼe{{F48gSw+=WP+}S^^vIթ*lzwI*>5Jy΍gN>qi/A> i8A6qnɖGoX4_Rg10,ɛQdF:x2T8g0GNm:=dϮw-&0汀/(~j&&5"_U%iQ2d)YsvVz<ԏtQ~!Ï ׭!X0qC(iA,iPepD78etAG9DP9c"OwX B*u#2UsfM1U,Hmv%TK XfdTӅWm3"saJ  >s$F|Uӈ/- qˊ=׺'8 EyaV3ܞ6D) 3L^mwP튻Եp%t-7LTN򸳫tM` O)a~ Dw+ ,|8mSòU"Nß?j蔃u W N35Q@]5똝|`کaju.[$  ` Mѫ̪W&0ؔ^Td&RXw4-3"l.Ђ-!cOa IE'I״)к0LQ3$ǵ0"v8UvuG:q_x5mE^?;elFՌ1iKan%7X(ˋ_Uw\Vo΀P i#KR1dnMϟp "ݭ9U jG^NN1zN+ $ʥ&,r8\Nلg &Xu|b5*Bj :5{M>~dx#_g%

求高中阶段所有向量公式
求高中阶段所有向量公式

求高中阶段所有向量公式
设a=(x,y),b=(x',y'). 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)b=λ(ab)=(aλb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ. 3、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab.若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣. 向量的数量积的坐标表示:ab=xx'+yy'. 向量的数量积的运算律 ab=ba(交换律); (λa)b=λ(ab)(关于数乘法的结合律); (a+b)c=ac+bc(分配律); 向量的数量积的性质 aa=|a|的平方. a⊥b 〈=〉ab=0. |ab|≤|a||b|. 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2. 2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c. 3、|ab|≠|a||b| 4、由 |a|=|b| ,推不出 a=b或a=-b. 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0. 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0. a‖b〈=〉a×b=0. 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的. 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号. 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣. ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号. 定比分点 定比分点公式(向量P1P=λ向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数 λ,使 向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比. 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ).(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的重要条件是 xy'-x'y=0. 零向量0平行于任何向量. [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 ab=0. a⊥b的充要条件是 xx'+yy'=0. 零向量0垂直于任何向量.