1,2,3,4.n各个数的倒数和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:50:47
1,2,3,4.n各个数的倒数和
1,2,3,4.n各个数的倒数和
1,2,3,4.n各个数的倒数和
自然数的倒数组成的数列,称为调和数列,即:1/1+1/2+1/3+...+1/n 这个数组是发散的,所以没有求和公式,只有一个近似的求解方法:1+1/2+1/3+.+1/n ≈ lnn+C(C=0.57722.一个无理数,称作欧拉初始,专为调和级数所用) 当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//C++里面用log(n),pascal里面用ln(n) 0.57721566490153286060651209叫做欧拉常数 to GXQ:假设;s(n)=1+1/2+1/3+1/4+..1/n 当n很大时 sqrt(n+1) = sqrt(n*(1+1/n)) = sqrt(n)*sqrt(1+1/2n) ≈ sqrt(n)*(1+ 1/(2n)) = sqrt(n)+ 1/(2*sqrt(n)) 设s(n)=sqrt(n),因为:1/(n+1)
利用“欧拉公式” 1+1/2+1/3+……+1/n =ln(n)+C,(C为欧拉常数) 具体证明看下面的链接 欧拉常数近似值约为0.57721566490153286060651209 道题用数列的方法是算不出来的 Sn=1+1/2+1/3+…+1/n >ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n) =ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/...
全部展开
利用“欧拉公式” 1+1/2+1/3+……+1/n =ln(n)+C,(C为欧拉常数) 具体证明看下面的链接 欧拉常数近似值约为0.57721566490153286060651209 道题用数列的方法是算不出来的 Sn=1+1/2+1/3+…+1/n >ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n) =ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n] =ln[2*3/2*4/3*…*(n+1)/n] =ln(n+1)
收起