大家帮忙证明一道高数题f(x)在[a,b]内连续(a>0),(a,b)内可导,证在(a,b)内存在ξ,η,使f'(ξ)=η^2f'(η)/ab大家也可以给一点建议
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:18:16
xMJ1HAdi'#m7zQI2IghGRA7.D"
+[7)&]ySEq#Bp%K6̫KUSjjϕ__Wo\15٤쵏͛$CLЙڭڣ𦢫N-GԧX7 e@<6ƽj>,[?E-;I]lč÷,\"]`ӺNE
大家帮忙证明一道高数题f(x)在[a,b]内连续(a>0),(a,b)内可导,证在(a,b)内存在ξ,η,使f'(ξ)=η^2f'(η)/ab大家也可以给一点建议
大家帮忙证明一道高数题
f(x)在[a,b]内连续(a>0),(a,b)内可导,证在(a,b)内存在ξ,η,使f'(ξ)=η^2f'(η)/ab
大家也可以给一点建议
大家帮忙证明一道高数题f(x)在[a,b]内连续(a>0),(a,b)内可导,证在(a,b)内存在ξ,η,使f'(ξ)=η^2f'(η)/ab大家也可以给一点建议
证明如下:
大家帮忙证明一道高数题f(x)在[a,b]内连续(a>0),(a,b)内可导,证在(a,b)内存在ξ,η,使f'(ξ)=η^2f'(η)/ab大家也可以给一点建议
帮忙求证一道高数题:设在(a,b)内F(x)和G(x)的导数相等,证明在(a,b)上F(x)=G(X)+c,c为常数
一道有关概率论的数学题f(x)在[a,b]上连续,证明这个不等式.
一道导数题求教设函数f(x)在【a,b】上连续,在(a,b)上可导,证明在(a,b)内至少存在一点m,使f'(m)=【f(m)-f(a)】/b-m分析说:要证明(b-m)f'(m)-【f(m)-f(a)}】=0即要证明{(b-x)【f(x)-f(a)】'+(b-x)'【f
一道有挑战的微积分F(x)在【a,b】上连续,且f(x)>0,证明
帮忙证明一道大一新生的高数证明题!设映射X→Y,A∈X,B∈X,证明:1、f(A∪B)=f(A)∪f(B)2、f(A∩B)(包含于)f(A)∩f(B)最好有严谨的过程,
帮忙证明一道高数题~若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1 <x2<x3<b,证明:在(x1,x2)内至少有一点ξ,使得f的二阶导数(ξ)=0对,我确实打错了!应该
涉及到使用零点定理的一道高数证明题,设f(x)在[a,b]上连续,f(a)=f(b),证明,存在Xo属于(a,b),使得f(Xo)=f(Xo+(b-a)/2)
一道关于连续函数有界性的高数题证明:若函数f(x)在(a,+∞)连续,且limf(x)=A与limf(x)=B,则f(x)在(a,+∞)有界.
一道高数证明题求解设f″(x)在[a,b]上存在,且a
关于连续的一道高等数学题设函数F(X)在闭区间[a,b]上连续,c,d属于(a,b),m,n>0,证明:至少存在一点&属于[a,b],使得mF(c)+nF(d)=(m+n)F(&).请高手帮忙速回答很急存在一点&属于[a,b],使得mF(c)+nF(d)=(m+n)F(&)
微积分--证明题设函数f(x)在【a,b】上连续,f(a)b,证明在(a,b)内至少有一点m,使f(m)=m请帮忙!谢谢谢
一道周期函数证明题若定义在R上的函数f(x) 关于x=a或x=b都(b>a)对称,证明f(x)为周期函数,2b-2a为它的一个周期.
一道高数题,.f(x)在【a,b】二阶可导,f’(a)=f’(b)=0,证明存在c∈(a,b)使得|f’’(c)|≥4/(b-a)2|f(a)-f(b)|上面那个(b-a)2 的2是平方..还有看不懂得再问我.
问一道高数题,证明:设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)则在(a,b)内至少存在一点g,使得 f'(g)>0一直想不通啊,不是罗尔定理啊,麻烦给出证明过程,
求解一道大一高数题设f(x)在[a,b]连续,在(a,b)可导,试证明至少存在一个ξ属于(a,b)使f(b)-f(ξ)=f'(ξ)(ξ-a)
高数题.若f(x)在【a,b】上有二阶导f''(x),且f'(a)=f'(b)=0,证明在(a,b)内至少存在一点c,满足|f''(c)|>={4/[(b-a)^2]}*|f(b)-f(a)|.
一道定积分题若函数f在[a,b]上可积,F在[a证明,b]上连续,且除有限个点外有F'(x)=f(x),证明f(x)在[a,b]上的定积分为F(b)-F(a)