如图在RT三角形ABC中角BAC=90°AB=AC,AE是过A点的一条直线且B点和C点在AE的两侧BD⊥AE于点D AE垂直如图1,在RT三角形ABC中,角BAC=90°,AB=AC,AE是过A点的一条直线,且B点和C点在AE的两侧,BD⊥AE于点D,CE⊥AE于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 07:11:40
如图在RT三角形ABC中角BAC=90°AB=AC,AE是过A点的一条直线且B点和C点在AE的两侧BD⊥AE于点D AE垂直如图1,在RT三角形ABC中,角BAC=90°,AB=AC,AE是过A点的一条直线,且B点和C点在AE的两侧,BD⊥AE于点D,CE⊥AE于
如图在RT三角形ABC中角BAC=90°AB=AC,AE是过A点的一条直线且B点和C点在AE的两侧BD⊥AE于点D AE垂直
如图1,在RT三角形ABC中,角BAC=90°,AB=AC,AE是过A点的一条直线,且B点和C点在AE的两侧,BD⊥AE于点D,CE⊥AE于点E,DE=4则BD-CE=
如图在RT三角形ABC中角BAC=90°AB=AC,AE是过A点的一条直线且B点和C点在AE的两侧BD⊥AE于点D AE垂直如图1,在RT三角形ABC中,角BAC=90°,AB=AC,AE是过A点的一条直线,且B点和C点在AE的两侧,BD⊥AE于点D,CE⊥AE于
∵∠BAC=90°
∴∠BAE+∠CAE=90°
∵BD⊥AE,CE⊥AE
∴∠ADB=∠AEC=90
∴∠BAE+∠ABD=90
∴∠ABD=∠CAE
∵AB=AC
∴△ABD≌△ACE (AAS)
∴AE=BD,AD=CE
∵AE=DE+AD
∴AE=DE+CE
∴BD=DE+CE
∴BD-CE=DE=4
BD-CE=4
证明如下;∵BD⊥AE,CE⊥AE
∴角BDA=∠AEC
∵∠BAC=90°
∴∠BAD+∠CAE=90°
又∵∠BAD+∠ABD=180°-∠BDA=90°
∴∠ABD=∠EAC
∴在△ABD与△CAE中
{∠ADB=∠CEA
∠BAD=∠CAE
AB=AC
∴AD=CE
BD=AE
∴BD-CE=AE-AD=DE=4